Insights into the Development of Cu-based Photocathodes for Carbon Dioxide (CO2) Conversion

2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...

Author(s):  
Yayu Guan ◽  
minmin Liu ◽  
Xufeng Rao ◽  
Yuyu Liu ◽  
Jiujun Zhang

With the fast consumption of fossil fuels, the concentration of carbon dioxide (CO2) in the atmosphere has increased considerably, leading to possible irreversible climate changes. The electrochemical reduction of CO2...


Author(s):  
Qi Hang Low ◽  
Boon Siang Yeo

Abstract Anthropogenic activities powered by the burning of fossil fuels have caused excessive emissions of carbon dioxide (CO2) to the atmosphere. This has a negative impact on our environment. One promising approach to reduce the concentration of atmospheric CO2 is to convert it to useful products. This could be achieved via the electrochemical reduction of CO2 using renewable electricity. Methanol (CH3OH), a valuable fuel and feedstock, is one of the CO2 electroreduction products. However, its formation, thus far, has been plagued by the inadequacy of functional electrocatalysts. In this review, we summarize progresses made in the development of methanol-selective electrocatalysts, which provides us with a basis to discuss the underlying challenges of electroreducing CO2 to methanol.


2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


Author(s):  
E. J. Jelmy ◽  
Nishanth Thomas ◽  
Dhanu Treasa Mathew ◽  
Jesna Louis ◽  
Nisha T Padmanabhan ◽  
...  

The investigations on anthropogenic carbon dioxide (CO2) capture and conversion have a vital role in eradicating the global warming and energy crisis. In this context, defect- engineered two-dimensional (2D) nanomaterials...


2017 ◽  
Vol 21 (1) ◽  
pp. 26 ◽  
Author(s):  
EllIN HARlIA HARlIA ◽  
MARlINA ET ◽  
MASITA R ◽  
RAHMAH KN

The natural methane formed by bacteria in anaerobic conditions is known as biogenic gas. Gas trapped in coal, formed through thermogenesis as well as biogenesisis known as coal-bed methane (CBM). The availability of organic material as decomposition of this material into methane is continuously required for the production of methane in the coal aquifer. The aim of this research was to investigate whether or not cattle feces bacteria were able to grow and produce methane in coal. Parameters measured were Volatile Fatty Acids (VFA) and the production of biogas, such as nitrogen, hydrogen, carbon dioxide, and methane. Explorative method was used and data obtained was analyzed by descriptive approach. The results showed that the bacteria found in the feces survived in the coal and produce biogas. On day 2 when the process was at the acidogenesis phase, it produced VFA with the largest component of acetic acid. Acetic acid would undergo decarboxylation and reduction of CO2 followed by reactions of H2and CO2 to produce methane (CH4) and carbon dioxide (CO2) as the final products. ,


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2507-2514 ◽  
Author(s):  
Yipeng Bao ◽  
Jin Wang ◽  
Qi Wang ◽  
Xiaofeng Cui ◽  
Ran Long ◽  
...  

Harvesting solar energy to convert carbon dioxide (CO2) into fossil fuels shows great promise to solve the current global problems of energy crisis and climate change.


Author(s):  
Marian PROOROCU ◽  
Sorin DEACONU ◽  
Mihaela SMARANDACHE

As a Party to the United Nations Framework Convention on Climate Change (UNFCCC), and its Kyoto Protocol, Romania is required to elaborate, regularly update and submit the national GHG Inventory. In compliance with the reporting requirements, Romania submitted in 2010 its ninth version of the National Inventory Report (NIR) covering the national inventories of GHG emissions/removals for the period 1989-2008. The inventories cover all sectors: Energy, Industrial Processes, Solvent and other product use, Agriculture, LULUCF and Waste. The direct GHGs included in the national inventory are: Carbon dioxide (CO2); Methane (CH4); Nitrous oxide (N2O); Hydrofluorocarbons (HFCs); Perfluorocarbons (PFCs); Sulphur hexafluoride (SF6). The emissions trend over the 1989-2008 period reflects the changes characterized by a process of transition to a market economy. With the entire economy in transition, some energy intensive industries reduced their activities and this is reflected in the GHG emissions reduction. Energy represents the most important sector in Romania, accounting for about 69% of the total national GHG emissions in 2008. The most significant anthropogenic greenhouse gas is the carbon dioxide. The decrease of CO2 emissions is caused by the decline of the amount of fossil fuels burnt in the energy sector, as a consequence of activity decline. According to the figures, there is a great probability for Romania to meet the Kyoto Protocol commitments on the limitation of the GHG emissions in the 2008-2012 commitment period.


2021 ◽  
Author(s):  
Qingqing Lu ◽  
Kamel Eid ◽  
Wenpeng Li ◽  
Aboubakr M Abdullah ◽  
Guobao Xu ◽  
...  

Carbon dioxide reduction reaction (CO2RR) to useful fuels/chemicals such as methane, formic, and methanol, is an innovative way to address looming energy and environmental issues. Graphitic carbon nitride (g-C3N4), as...


2021 ◽  
Author(s):  
Qi-Su Huang ◽  
Wei Wei ◽  
Bing-Jie Ni

Photocatalytic carbon dioxide (CO2) conversion is a promising technology to address the greenhouse effect and energy shortage problems by utilizing the inexhausted solar energy. However, the over-reliance of the metal-based...


Sign in / Sign up

Export Citation Format

Share Document