Functionalized gold-nanoparticles enhance Photosystem II driven photocurrent in a hybrid nano-bio-photoelectrochemical cell

Author(s):  
Hagit Shoyhet ◽  
Nicholas G. Pavlopoulos ◽  
Lilac Amirav ◽  
Noam Adir

The use of Photosystem II (PSII) in hybrid bio-photoelectrochemical cells for conversion of solar energy to electrical current is hampered by PSII's narrow absorption cross-section and the generally poor electrical...

2021 ◽  
Vol 1862 (12) ◽  
pp. 148494
Author(s):  
Elena A. Protasova ◽  
Taras K. Antal ◽  
Dmitry V. Zlenko ◽  
Irina V. Elanskaya ◽  
Evgeny P. Lukashev ◽  
...  

Author(s):  
Jeffrey Wielgus ◽  
Oren Levy

A SCUBA-based fast repetition rate fluorometer (FRRF) was used to study differences in the functional absorption cross-section of Photosystem II (σPSII) between areas of a coral colony of Astreoporamyriophthalma that were infested with spionid polychaetes vs areas lacking worms. The mean value of σPSII in infested areas (mean±SD=347.62±30.67 Å2) was significantly higher than in the areas that were not infested (316.32±17.49 Å2; P<0.0001). Several physiological mechanisms are discussed that may contribute to the observed differences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mazen Alrahili ◽  
Viktoriia Savchuk ◽  
Kelly McNear ◽  
Anatoliy Pinchuk

Abstract We present a method for measuring the optical absorption cross section ($$\sigma_{abs}$$ σ abs ) of gold nanoparticles (GNPs) based on optically heating the solution of GNPs with an 808 nm near-infrared (NIR) laser and measuring the temperature increase of the solution. We rely on the theoretical calculations based on the heat diffusion equations and experimental measurements based on the energy balance equations to measure the $$\sigma_{abs}$$ σ abs and the temperature distribution of single GNPs. Several morphologies, including gold nanospheres (GNSs), spherical gold nanoparticle conjugate (AuNPC), which are 20 nm GNSs surface-functionalized with an IR 808 dye, gold nanorods (GNRs), and gold nanourchins (GNUs), were studied. The study found that a single 20 nm GNS has the lowest $$\sigma_{abs}$$ σ abs and temperature distribution as compared to 100 nm GNUs. By increasing the size of GNSs from 20 to 30 nm, the magnitude of $$\sigma_{abs}$$ σ abs as well as temperature distribution increases by a factor of 5. The $$\sigma_{abs}$$ σ abs values of 20 and 30 nm GNSs calculated by Mie theory and the experimentally measured are in a good agreement. GNRs with equivalent radius ($$R_{eq}$$ R eq ) 9.16 nm show the second lowest $$\sigma_{abs}$$ σ abs . By increasing the $$R_{eq}$$ R eq by a factor of 2 to 19.2 nm, the measured $$\sigma_{abs}$$ σ abs and temperature distribution also increased by a factor of 2. We also estimated $$\sigma_{abs}$$ σ abs for GNUs with diameters at 80 and 100 nm, which also have higher $$\sigma_{abs}$$ σ abs values. This work confirms that we can use temperature to accurately measure the $$\sigma_{abs}$$ σ abs of a variety of GNPs in solution.


2021 ◽  
Author(s):  
Hamed Sattari Vayghan ◽  
Wojciech J Nawrocki ◽  
Christo Schiphorst ◽  
Dimitri Tolleter ◽  
Hu Chen ◽  
...  

Light absorbed by chlorophylls of photosystem II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is the trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of the trimeric LHCII. In absence of LHCB1 the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss leading to a pale green phenotype and growth delay. Photosystem II absorption cross-section was smaller while photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by a lower photosystem I over photosystem II reaction center ratio and by the dephosphorylation of LHCII and photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knock out lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025120
Author(s):  
C. Stanford ◽  
M. J. Wilson ◽  
B. Cabrera ◽  
M. Diamond ◽  
N. A. Kurinsky ◽  
...  

2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


Sign in / Sign up

Export Citation Format

Share Document