Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells

Author(s):  
Chieh-Szu Huang ◽  
Xinyue Kang ◽  
René M. Rossi ◽  
Maksym V. Kovalenko ◽  
Xuemei Sun ◽  
...  

The integration of fiber solar cells (FSCs) and wearable luminescent solar concentrators leads to an enhancement of power conversion efficiency of FSCs.

2020 ◽  
Vol 31 (45) ◽  
pp. 455205
Author(s):  
Qingyang Lu ◽  
Shuhong Xu ◽  
Haibao Shao ◽  
Guangguang Huang ◽  
Jingkun Xu ◽  
...  

2020 ◽  
Vol 22 (15) ◽  
pp. 4943-4951 ◽  
Author(s):  
Carlota P. A. Carlos ◽  
Sandra F. H. Correia ◽  
Margarida Martins ◽  
Oleksandr A. Savchuk ◽  
João A. P. Coutinho ◽  
...  

Green fluorescent protein was used to fabricate planar LSCs in liquid and solid state, yielding competitive power conversion efficiency values stating the potential of naturally-based molecules in the development of sustainable LSCs.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Cheng Liu ◽  
Ruijiang Deng ◽  
Yanlin Gong ◽  
Cheng Zou ◽  
Yong Liu ◽  
...  

Luminescent solar concentrators (LSCs) were fabricated by dispersing CaAlSiN3 : Eu2+particles in a PMMA waveguide. A series of LSCs (dimension 5.0 cm × 5.0 cm × 0.5 cm) with different CaAlSiN3 : Eu2+particle concentration were obtained and their performance was evaluated. The maximum optical concentration ratio is 1.23 with a power conversion efficiency of 1.44% for the LSC containing 0.5 wt% CaAlSiN3 : Eu2+particles concentration. This strategy of dispersing rare earth particles in PMMA waveguide represents an alternative approach to producing highly durable LSCs.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2021 ◽  
Author(s):  
Stav Rahmany ◽  
Lioz Etgar

Much effort has been made to push the power conversion efficiency of perovskite solar cells (PSCs) towards the theoretical limit. Recent studies have shown that post deposition treatment of barrier...


Sign in / Sign up

Export Citation Format

Share Document