High partial thermal conductivity of luminescence sites: a crucial factor for reducing the heat-induced lowering of the luminescence efficiency

Author(s):  
Ni Luo ◽  
Jing Xu ◽  
Xiyue Cheng ◽  
ZhenHua Li ◽  
Yidong Huang ◽  
...  

The good thermal stability of a phosphor is crucial for its practical applications. Unfortunately, in the past decades, only Gurney-Mott equation was available to describe the relation between the luminescence...

2012 ◽  
Vol 512-515 ◽  
pp. 1018-1021
Author(s):  
Xu Fei Zhu ◽  
Long Fei Jiang ◽  
Wei Xing Qi ◽  
Chao Lu ◽  
Ye Song

To overcome the risk of electrolyte leakage and the shortcoming of higher impedance at high frequencies for the conventional aluminum electrolytic capacitor impregnated with electrolyte solutions, solid aluminum electrolytic capacitor employing conducting polyaniline (PANI) as a counter electrode was developed. The as-fabricated solid capacitors have very low impedances at high frequencies and excellent thermal stability. The superior performances can be ascribed to high conductivity and good thermal stability of the camphorsulfonic acid (CSA)-dodecylbenzenesulfonic acid (DBSA) co-doped PANI.


2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


2014 ◽  
Vol 1033-1034 ◽  
pp. 931-936
Author(s):  
Cong Yan Chen ◽  
Rui Lan Fan ◽  
Guan Qun Yun

A novel intumescent flame retardant (IFR) containing ferrocene and caged bicyclic phosphate groups, 1-oxo-4-[4'-(ferrocene carboxylic acid phenyl ester)] amide-2, 6, 7-trioxa-1-phosphabicyclo- [2.2.2] octane (PFAM), was successfully synthesized. The synthesized PFAM were added to flammable polyurethane (PU) as flame retardants and smoke suppressants. The structure of PFAM was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and elemental analysis. Thermal stability of PFAM was tested by themogravimetric analysis (TGA). The results revealed that PFAM had good thermal stability and high char weight, the char weight up to 54% at 600 °C. Flammability properties of PU/PFAM composites were investigated by limiting oxygen index (LOI) test and UL-94 test, respectively. The results of LOI tests showed that the addition of PFAM enhanced flame retardancy of PU. When the content of PFAM reaches to 3%, the LOI value is 22.2. The morphologies of the char for PU and PU/3% PFAM composite can be obtained after LOI testing were examined by SEM. The results demonstrated that PFAM could promote to form the compact and dense intumescent char layer. Experiments showed that, the PFAM application of polyurethane showed positive effect.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1093
Author(s):  
Ye Xue ◽  
Xiao Hu

In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.


2017 ◽  
Vol 46 (48) ◽  
pp. 17053-17060 ◽  
Author(s):  
Vijayakumar Sajitha Aswathy ◽  
Cheriyedath Raj Sankar ◽  
Manoj Raama Varma ◽  
Abdeljalil Assoud ◽  
Mario Bieringer ◽  
...  

The layered chalcogenides, TlScQ2 (Q = Se, Te), possess intriguing band structure characteristics and very low thermal conductivity.


2007 ◽  
Vol 539-543 ◽  
pp. 3497-3502 ◽  
Author(s):  
J.P. Chu ◽  
C.H. Lin

Sputtered Cu films containing various insoluble substances, such as Cu(W2.3), Cu(Mo2.0), Cu(Nb0.4), Cu(C2.1) and Cu(W0.4C0.7), are examined in this study. These films are prepared by magnetron sputtering, followed by thermal annealing. The crystal structure, microstructure, SIMS depth-profiles, leakage current, and resistivity of the films are investigated. Good thermal stability of these Cu films is confirmed with focused ion beam, X-ray diffractometry, SIMS, and electrical property measurements. After annealing at 400°C, obvious drops in resistivity, to ~3.8 μ-cm, are seen for Cu(W) film, which is lower than the other films. An evaluation of the leakage current characteristic from the SiO2/Si metal-oxide-semiconductor (MOS) structure also demonstrates that Cu with dilute tungsten is more stable than the other films studied. These results further indicate that the Cu(W) film has more thermal stability than the Cu(Mo), Cu(Nb), Cu(C), Cu(WC) and pure Cu films. Therefore, the film is suitable for the future barrierless metallization.


2013 ◽  
Vol 291-294 ◽  
pp. 1159-1163
Author(s):  
Quan Ying Yan ◽  
Li Hang Yue ◽  
Li Li Jin ◽  
Ran Huo ◽  
Lin Zhang

This paper investigated the thermal performance of shape stabilized phase change paraffin and shape-stabilized phase change fatty acid. And the PCMs are mixtures of 60% 46# paraffin and 40% liquid paraffin, 65 % 48# paraffin and 35% liquid paraffin,30%capric acid and 70% lauric acid, 30%capric acid and 70% myristic acid. Support material is high-density polyethylene. The results in this paper show that: Thermal stability of both of the two types of phase change materials are good, thermal stability of shape stabilized phase change fatty acid is better than that of paraffin. Results in this paper can provide references and basis for the application of phase change material walls in the practice building.


2016 ◽  
Vol 39 (S2) ◽  
pp. E664-E670 ◽  
Author(s):  
Djamila Kada ◽  
Ahmed Koubaa ◽  
Ghezalla Tabak ◽  
Sebastien Migneault ◽  
Bertrand Garnier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document