Li3VO4 micro/nanoscale anode with fast ion transportation for advanced lithium-ion batteries: a mini-review

Author(s):  
Miaomiao Wang ◽  
Chunsheng Li ◽  
Yan Sun ◽  
Yang Chen ◽  
Lin Li ◽  
...  

In recent years, Li3VO4 has been considered as a promising anode for advanced lithium-ion batteries due to its special crystal structure and high theoretical capacity. However, the poor electronic conductivity...

2020 ◽  
Vol 860 ◽  
pp. 69-74
Author(s):  
Iman Rahayu ◽  
Engela Evy Ernawati ◽  
Atiek Rostika Noviyanti ◽  
Yusra Linda ◽  
Diana Rakhmawaty ◽  
...  

In the recent years, LiFePO4 has been widely developed as a cathode for lithium ion batteries because it has high theoretical capacity (170 mAh/g), good stability and is also environmentally friendly. However, the poor electronic conductivity (~10-9 S/cm) and low diffusion coefficient of lithium ion (~10-15-10-14 cm2/s) are limiting its application. Some solutions to overcome this problem are carbon coating and doping metal ions. This study aims to determine the effect of Gd3+ ion doping on the electronic conductivity of LiFePO4/C. The synthesis method was used is carbothermal reduction with Fe2O3, Gd2O3, LiH2PO4 and carbon black reagents. The synthesized LiFe1-xGdxPO4/C was characterized using XRD, SEM-EDS, and four point probes. The results obtained showed that gadolinium ion doping increased the conductivity of LiFePO4/C from 1.8952 x10-6 to 8.69x10-6 Scm-1 using 0.07 mol ion Gd3+.


2021 ◽  
Author(s):  
Faze Wang ◽  
Fanggang Li ◽  
Maojun Zheng ◽  
Jun Wang

Molybdenum disulfide (MoS2) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity. But its rapid capacity decay due to the poor conductivity, structure pulverization,...


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Zhang ◽  
Danjun Wang ◽  
Qizhen Zhu ◽  
Ning Sun ◽  
Feng Fu ◽  
...  

Abstract Bi2MoO6 is a potentially promising anode material for lithium-ion batteries (LIBs) on account of its high theoretical capacity coupled with low desertion potential. Due to low conductivity and large volume expansion/contraction during charge/discharge cycling of Bi2MoO6, effective modification is indispensable to address these issues. In this study, a plate-to-layer Bi2MoO6/Ti3C2Tx (MXene) heterostructure is proposed by electrostatic assembling positive-charged Bi2MoO6 nanoplates on negative-charged MXene nanosheets. MXene nanosheets in the heterostructure act as a highly conductive substrate to load and anchor the Bi2MoO6 nanoplates, so as to improve electronic conductivity and structural stability. When the mass ratio of MXene is optimized to 30%, the Bi2MoO6/MXene heterostructure exhibits high specific capacities of 692 mAh g−1 at 100 mA g−1 after 200 cycles and 545.1 mAh g−1 with 99.6% coulombic efficiency at 1 A g−1 after 1000 cycles. The results provide not only a high-performance lithium storage material, but also an effective strategy that could address the intrinsic issues of various transition metal oxides by anchoring them on MXene nanosheets to form heterostructures and use as anode materials for LIBs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1732
Author(s):  
Dan Zhao ◽  
Qian Zhao ◽  
Zhenyu Wang ◽  
Lan Feng ◽  
Jinying Zhang ◽  
...  

Potassium-ion batteries (KIBs) have come up as a potential alternative to lithium-ion batteries due to abundant potassium storage in the crust. Red phosphorus is a promising anode material for KIBs with abundant resources and high theoretical capacity. Nevertheless, large volume expansion, low electronic conductivity, and limited K+ charging speed in red phosphorus upon cycling have severely hindered the development of red phosphorus-based anodes. To obtain improved conductivity and structural stability, surface engineering of red phosphorus is required. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated red phosphorus nanospheres (RPNP@PEDOT) with an average diameter of 60 nm were synthesized via a facile solution-phase approach. PEDOT can relieve the volume change of red phosphorus and promote electron/ion transportation during charge−discharge cycles, which is partially corroborated by our DFT calculations. A specific capacity of 402 mAh g−1 at 0.1 A g−1 after 40 cycles, and a specific capacity of 302 mAh g−1 at 0.5 A g−1 after 275 cycles, were achieved by RPNP@PEDOT anode with a high pseudocapacitive contribution of 62%. The surface–interface engineering for the organic–inorganic composite of RPNP@PEDOT provides a novel perspective for broad applications of red phosphorus-based KIBs in fast charging occasions.


RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42083-42087 ◽  
Author(s):  
Zhao Min Sheng ◽  
Xin Jian Chang ◽  
Yu Hang Chen ◽  
Cheng Yang Hong ◽  
Na Na Li ◽  
...  

Removal of the N-doped template creates nanopores in the shells of nanocages. The created nanopores enhance fast ion diffusion.


2006 ◽  
Vol 973 ◽  
Author(s):  
Shijun Wang ◽  
M. Stanley Whittingham

ABSTRACTThis study focusses on optimizing the parameters of the hydrothermal synthesis to produce iron phosphates for lithium ion batteries, with an emphasis on pure LiFePO4 with the olivine structure and compounds containing a higher iron:phosphate ratio. Lithium iron phosphate (LiFePO4) is a promising cathode candidate for lithium ion batteries due to its high theoretical capacity, environmentally benign and the low cost of starting materials. Well crystallized LiFePO4 can be successfully synthesized at temperatures above 150 °C. The addition of a reducing agent, such as hydrazine, is essential to minimize the oxidation of ferrous (Fe2+) to ferric (Fe3+) in the final compound. The morphology of LiFePO4 is highly dependent on the pH of the initial solution. This study also investigated the lipscombite iron phosphates of formula Fe1.33PO4OH. This compound has a log-like structure formed by Fe-O octahedral chains. The chains are partially occupied by the Fe3+ sites, and these iron atoms and some of the vacancies can be substituted by other cations. Most of the protons can be ion-exchanged for lithium, and the electrochemical capacity is much increased.


2019 ◽  
Vol 73 (11) ◽  
pp. 880-893 ◽  
Author(s):  
Nam Hee Kwon ◽  
Joanna Conder ◽  
Mohammed Srout ◽  
Katharina M. Fromm

Lithium ion batteries are typically based on one of three positive-electrode materials, namely layered oxides, olivine- and spinel-type materials. The structure of any of them is 'resistant' to electrochemical cycling, and thus, often requires modification/post-treatment to improve a certain property, for example, structural stability, ionic and/or electronic conductivity. This review provides an overview of different examples of coatings and surface modifications used for the positive-electrode materials as well as various characterization techniques often chosen to confirm/detect the introduced changes. It also assesses the electrochemical success of the surface-modified positive-electrode materials, thereby highlighting remaining challenges and pitfalls.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2389
Author(s):  
Faizan Ghani ◽  
In Wook Nah ◽  
Hyung-Seok Kim ◽  
JongChoo Lim ◽  
Afifa Marium ◽  
...  

Low-cost, vanadium-based mixed metal oxides mostly have a layered crystal structure with excellent kinetics for lithium-ion batteries, providing high energy density. The existence of multiple oxidation states and the coordination chemistry of vanadium require cost-effective, robust techniques to synthesize the scaling up of their morphology and surface properties. Hydrothermal synthesis is one of the most suitable techniques to achieve pure phase and multiple morphologies under various conditions of temperature and pressure. We attained a simple one-step hydrothermal approach to synthesize the reduced graphene oxide coated Nickel Vanadate (rGO@Ni3V2O8) composite with interconnected hollow microspheres. The self-assembly route produced microspheres, which were interconnected under hydrothermal treatment. Cyclic performance determined the initial discharge/charge capacities of 1209.76/839.85 mAh g−1 at the current density of 200 mA g−1 with a columbic efficiency of 69.42%, which improved to 99.64% after 100 cycles. High electrochemical performance was observed due to high surface area, the porous nature of the interconnected hollow microspheres, and rGO induction. These properties increased the contact area between electrode and electrolyte, the active surface of the electrodes, and enhanced electrolyte penetration, which improved Li-ion diffusivity and electronic conductivity.


RSC Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 3936-3945
Author(s):  
Gan Cai ◽  
Zhenguo Wu ◽  
Tao Luo ◽  
Yanjun Zhong ◽  
Xiaodong Guo ◽  
...  

In recent years, anode materials of transition metal phosphates (TMPs) for lithium ion batteries have drawn a vast amount of attention, due to their high theoretical capacity and comparatively low intercalation potentials vs. Li/Li+.


2019 ◽  
Vol 87 (3) ◽  
pp. 156-161 ◽  
Author(s):  
Naohisa OKITA ◽  
Etsuro IWAMA ◽  
Yusuke TAKAMI ◽  
Shingo ABO ◽  
Wako NAOI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document