Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ42 toxicity in Drosophila

2016 ◽  
Vol 473 (20) ◽  
pp. 3683-3704 ◽  
Author(s):  
Helen Poska ◽  
Martin Haslbeck ◽  
Firoz Roshan Kurudenkandy ◽  
Erik Hermansson ◽  
Gefei Chen ◽  
...  

Formation of fibrils of the amyloid-β peptide (Aβ) is suggested to play a central role in neurodegeneration in Alzheimer's disease (AD), for which no effective treatment exists. The BRICHOS domain is a part of several disease-related proproteins, the most studied ones being Bri2 associated with familial dementia and prosurfactant protein C (proSP-C) associated with lung amyloid. BRICHOS from proSP-C has been found to be an efficient inhibitor of Aβ aggregation and toxicity, but its lung-specific expression makes it unsuited to target in AD. Bri2 is expressed in the brain, affects processing of Aβ precursor protein, and increased levels of Bri2 are found in AD brain, but the specific role of its BRICHOS domain has not been studied in vivo. Here, we find that transgenic expression of the Bri2 BRICHOS domain in the Drosophila central nervous system (CNS) or eyes efficiently inhibits Aβ42 toxicity. In the presence of Bri2 BRICHOS, Aβ42 is diffusely distributed throughout the mushroom bodies, a brain region involved in learning and memory, whereas Aβ42 expressed alone or together with proSP-C BRICHOS forms punctuate deposits outside the mushroom bodies. Recombinant Bri2 BRICHOS domain efficiently prevents Aβ42-induced reduction in γ-oscillations in hippocampal slices. Finally, Bri2 BRICHOS inhibits several steps in the Aβ42 fibrillation pathway and prevents aggregation of heat-denatured proteins, indicating that it is a more versatile chaperone than proSP-C BRICHOS. These findings suggest that Bri2 BRICHOS can be a physiologically relevant chaperone for Aβ in the CNS and needs to be further investigated for its potential in AD treatment.

2019 ◽  
Vol 91 (2) ◽  
pp. 211-229 ◽  
Author(s):  
Sara Linse

Abstract Inhibition of amyloid β peptide (Aβ) aggregation is an important goal due to the connection of this process with Alzheimer’s disease. Traditionally, inhibitors were developed with an aim to retard the overall macroscopic aggregation. However, recent advances imply that approaches based on mechanistic insights may be more powerful. In such approaches, the microscopic steps underlying the aggregation process are identified, and it is established which of these step(s) lead to neurotoxicity. Inhibitors are then derived to specifically target steps involved in toxicity. The Aβ aggregation process is composed of at minimum three microscopic steps: primary nucleation of monomers only, secondary nucleation of monomers on fibril surface, and elongation of fibrils by monomer addition. The vast majority of toxic species are generated from the secondary nucleation process: this may be a key process to inhibit in order to limit toxicity. Inhibition of primary nucleation, which delays the emergence of toxic species without affecting their total concentration, may also be effective. Inhibition of elongation may instead increase the toxicity over time. Here we briefly review findings regarding secondary nucleation of Aβ, its dominance over primary nucleation, and attempts to derive inhibitors that specifically target secondary nucleation with an aim to limit toxicity.


2007 ◽  
Vol 104 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Kumiko Ishige ◽  
Noritaka Takagi ◽  
Toru Imai ◽  
Wolf Dieter Rausch ◽  
Yasuhiro Kosuge ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hansen Wang ◽  
Lisa D Muiznieks ◽  
Punam Ghosh ◽  
Declan Williams ◽  
Michael Solarski ◽  
...  

The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2010 ◽  
Vol 48 (1) ◽  
pp. 136-144 ◽  
Author(s):  
D. Allan Butterfield ◽  
Veronica Galvan ◽  
Miranda Bader Lange ◽  
Huidong Tang ◽  
Renã A. Sowell ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chu Hsien Lim ◽  
Prameet Kaur ◽  
Emelyne Teo ◽  
Vanessa Yuk Man Lam ◽  
Fangchen Zhu ◽  
...  

The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


1993 ◽  
Vol 48 (9-10) ◽  
pp. 749-756 ◽  
Author(s):  
S. Reuber ◽  
J. Leitsch ◽  
G. H. Krause ◽  
G. Weissenböck

Abstract In the epidermal layers of rye primary leaves two flavone glycosides and several hydroxycinnamoyl esters are localized, whereas the mesophyll contains two flavone glucuronides and two anthocyanins. The concentrations of all these potential UV-B protective phenylpropanoid compounds could be reduced by application of 2-aminoindan-2-phosphonic acid (AIP), an efficient inhibitor of phenylalanine ammonia-lyase (EC 4.1.3.5). Photosystem II in the primary leaves of seven-days-old plants, grown in the presence of 20 μm AIP up to an age of 80 h, was more severely affected by UV-B than in control plants with the normal concentration of phenylpropanoid compounds. Damage of photosystem II in vivo was estimated by measuring the chlorophyll a fluorescence (parameter FJFm) of PS II. The results indicate an essential role of phenylpropanoid com pounds as UV-B protectants in rye primary leaves


Sign in / Sign up

Export Citation Format

Share Document