scholarly journals Role of Caspase-12 in Amyloid β-Peptide-Induced Toxicity in Organotypic Hippocampal Slices Cultured for Long Periods

2007 ◽  
Vol 104 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Kumiko Ishige ◽  
Noritaka Takagi ◽  
Toru Imai ◽  
Wolf Dieter Rausch ◽  
Yasuhiro Kosuge ◽  
...  
2016 ◽  
Vol 473 (20) ◽  
pp. 3683-3704 ◽  
Author(s):  
Helen Poska ◽  
Martin Haslbeck ◽  
Firoz Roshan Kurudenkandy ◽  
Erik Hermansson ◽  
Gefei Chen ◽  
...  

Formation of fibrils of the amyloid-β peptide (Aβ) is suggested to play a central role in neurodegeneration in Alzheimer's disease (AD), for which no effective treatment exists. The BRICHOS domain is a part of several disease-related proproteins, the most studied ones being Bri2 associated with familial dementia and prosurfactant protein C (proSP-C) associated with lung amyloid. BRICHOS from proSP-C has been found to be an efficient inhibitor of Aβ aggregation and toxicity, but its lung-specific expression makes it unsuited to target in AD. Bri2 is expressed in the brain, affects processing of Aβ precursor protein, and increased levels of Bri2 are found in AD brain, but the specific role of its BRICHOS domain has not been studied in vivo. Here, we find that transgenic expression of the Bri2 BRICHOS domain in the Drosophila central nervous system (CNS) or eyes efficiently inhibits Aβ42 toxicity. In the presence of Bri2 BRICHOS, Aβ42 is diffusely distributed throughout the mushroom bodies, a brain region involved in learning and memory, whereas Aβ42 expressed alone or together with proSP-C BRICHOS forms punctuate deposits outside the mushroom bodies. Recombinant Bri2 BRICHOS domain efficiently prevents Aβ42-induced reduction in γ-oscillations in hippocampal slices. Finally, Bri2 BRICHOS inhibits several steps in the Aβ42 fibrillation pathway and prevents aggregation of heat-denatured proteins, indicating that it is a more versatile chaperone than proSP-C BRICHOS. These findings suggest that Bri2 BRICHOS can be a physiologically relevant chaperone for Aβ in the CNS and needs to be further investigated for its potential in AD treatment.


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sibaprasad Maity ◽  
Mohtadin Hashemi ◽  
Yuri L. Lyubchenko

2017 ◽  
Vol 8 (6) ◽  
pp. 2283-2294 ◽  
Author(s):  
Young-Ji Shiao ◽  
Muh-Hwan Su ◽  
Hang-Ching Lin ◽  
Chi-Rei Wu

This study investigates the role of the amyloid cascade and central neuronal function on the protective effects of echinacoside in amyloid β peptide 1-42 (Aβ 1-42)-treated SH-SY5Y cells and an Aβ 1-42-infused rat.


Author(s):  
Linlin Zhang ◽  
Aurelio Reyes ◽  
Xiangdong Wang

Abstract: The discovery of charged molecules being able to cross the mitochondrial membrane has prompted many scholars to exploit this idea to find a way of preventing or slowing down aging. In this paper, we will focus on mitochondriatargeted antioxidants, which are cationic derivatives of plastoquinone, and in particular on the mitochondria-targeted antioxidant therapy of neurodegenerative diseases. It is well known that the accumulation of amyloid-β peptide (Aβ) in mitochondria and its related mitochondrial dysfunction are critical signatures of Alzheimer’ s disease (AD). In another neurodegenerative disease, Parkinson’s disease (PD), the loss of dopaminergic neurons in the substantia nigra and the production of Lewy bodies are among their pathological features. Pathogenesis of Parkinson’s disease and Alzheimer’s disease has been frequently linked to mitochondrial dysfunction and oxidative stress. Recent studies show that MitoQ, a mitochondria-targeted antioxidant, may possess therapeutic potential for Aβ-related and oxidative stress-associated neurodegenerative diseases, especially AD. Although MitoQ has been developed to the stage of clinical trials in PD, its true clinical effect still need further verification. This review aims to discuss the role of mitochondrial pathology in neurodegenerative diseases, as well as the recent development of mitochondrial targeted antioxidants as a potential treatment for these diseases by removing excess oxygen free radicals and inhibiting lipid peroxidation in order to improve mitochondrial function.  


Sign in / Sign up

Export Citation Format

Share Document