scholarly journals Deoxyribonucleic acid–ribonucleic acid hybridization. Annealing and quantitative recovery of intact ribosomal ribonucleic acid molecules from hybrids

1969 ◽  
Vol 115 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Michael Fry ◽  
Michael Artman

A simple and efficient method for hybridization and subsequent recovery of non-fragmented ribosomal RNA from the hybrid is described. The procedure involves annealing of immobilized denatured DNA bound on cellulose nitrate membrane filters to complementary RNA in 50% (v/v) formamide–0·33m-potassium chloride–10mm-tris–hydrochloric acid buffer, pH7·4, at 33° for 3hr. Under these conditions no detectable changes in the sedimentation coefficients of the input RNA were detected. The RNA can subsequently be recovered quantitatively from the hybrid in intact form by incubating the filters in formamide or in 85% (v/v) dimethyl sulphoxide. The applicability of the method for the evaluation of the absolute size of ribosomal RNA cistrons in Escherichia coli DNA and for the determination of the size of messenger RNA molecules is discussed.

1974 ◽  
Vol 141 (3) ◽  
pp. 609-615 ◽  
Author(s):  
John Shine ◽  
Lynn Dalgarno

The 3′-terminal sequence of 18S ribosomal RNA from Drosophila melanogaster and Saccharomyces cerevisiae was determined by stepwise degradation from the 3′-terminus and labelling with [3H]isoniazid. The sequence G-A-U-C-A-U-U-AOH was found at the 3′-terminus of both 18S rRNA species. Less extensive data for 18S RNA from a number of other eukaryotes are consistent with the same 3′-terminal sequence, and an identical sequence has previously been reported for the 3′-end of rabbit reticulocyte 18S rRNA (Hunt, 1970). These results suggest that the base sequence in this region is strongly conserved and may be identical in all eukaryotes. As the 3′-terminal hexanucleotide is complementary to eukaryotic terminator codons we discuss the possibility that the 3′-end of 18S rRNA may have a direct base-pairing role in the termination of protein synthesis.


1977 ◽  
Vol 23 (4) ◽  
pp. 478-481 ◽  
Author(s):  
Richard L. Moore

The extent of hybrid formation between the ribosomal ribonucleic acid (r-RNA) of Hyphomicrobium strain B-522 and deoxyribonucleic acid (DNA) from bacteria of 21 different genera was examined. Three generalized groupings were formed. Group I (72–100%) consisted entirely of other strains of Hyphomicrobium. Representatives of the genera Rhodopseudomonas, Chromatium, Caulobacter, Prosthecomicrobium, Rhodomicrobium, Hyphomonas, and Hyphomicrobium made up group II (49–69%). The remaining Gram-negative, Gram-positive, and cell wall – less bacteria fell into group III (12–40%). The taxonomic implications of these results are discussed.


1969 ◽  
Vol 113 (1) ◽  
pp. 117-121 ◽  
Author(s):  
L. Stevens

1. The total intracellular concentrations of Na+, K+, Mg2+, spermine, spermidine and RNA were measured in Bacillus stearothermophilus. 2. The binding of spermine to ribosomes and to ribosomal RNA from B. stearothermophilus was studied under various conditions by using a gel-filtration technique. 3. The affinity of spermine for ribosomes and for ribosomal RNA decreased with increasing ionic strength of the medium in which they were suspended. 4. The extent of spermine binding did not change appreciably in the temperature range 4–60°. 5. Optimum binding occurred at about pH7·0. 6. The number of binding sites for spermine on either ribosomes or ribosomal RNA was 0·10–0·13/RNA phosphate group. 7. A high proportion of the intracellular spermine is likely to be bound to the ribosomes in vivo; spermine competes with Mg2+ on equal terms for sites on the ribosomes.


1981 ◽  
Vol 1 (2) ◽  
pp. 179-187 ◽  
Author(s):  
M Salditt-Georgieff ◽  
M M Harpold ◽  
M C Wilson ◽  
J E Darnell

The rate of synthesis in Chinese hamster cells of 5' cap structures, m7 GpppNmp, in large (greater than 700 bases) heterogeneous nuclear ribonucleic acid (RNA) molecules is two to three times faster than the synthesis of 3'-terminal polyadenylic acid segments. As judged by presence of caps, newly synthesized polysomal messenger RNA, exclusive of messenger RNA the size of histone messenger RNA, is more than 90% in the polyadenylated category. It appears, therefore, that between half and two-thirds of the long capped heterogeneous nuclear RNA molecules do not contribute a capped polysomal derivative to the cytoplasm. There are capped, nonpolysomal, non-polyadenylated molecules with a rapid turnover rate that fractionate with the cytoplasm. These metabolically unstable molecules either could represent leakage into the cytoplasm during fractionation or could truly spend a brief time in the cytoplasm before decay.


1981 ◽  
Vol 1 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M Sameshima ◽  
S A Liebhaber ◽  
D Schlessinger

The turnover rates of 3H-labeled 18S ribosomal ribonucleic acid (RNA), 28S ribosomal RNA, transfer RNA, and total cytoplasmic RNA were very similar in growing WI-38 diploid fibroblasts. The rate of turnover was at least twofold greater when cell growth stopped due to cell confluence, 3H irradiation, or treatment with 20 mM NaN3 or 2 mM NaF. In contrast, the rate of total 3H-protein turnover was the same in growing and nongrowing cells. Both RNA and protein turnovers were accelerated at least twofold in WI-38 cells deprived of serum, and this increase in turnover was inhibited by NH4Cl. These results are consistent with two pathways for RNA turnover, one of them being nonlysosomal and the other being lysosome mediated (NH4Cl sensitive), as has been suggested for protein turnover. Also consistent with the notion of two pathways for RNA turnover were findings with I-cells, which are deficient for many lysosomal enzymes, and in which all RNA turnover was nonlysosomal (NH4Cl resistant).


1968 ◽  
Vol 110 (2) ◽  
pp. 251-263 ◽  
Author(s):  
G. H. Pigott ◽  
J. E. M. Midgley

1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75–80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (±10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5′-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1·8–1·9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA.


1981 ◽  
Vol 1 (11) ◽  
pp. 972-982 ◽  
Author(s):  
D J Cummings ◽  
J L Laping

Previously we showed that the mitochondrial deoxyribonucleic acid (DNA) from Paramecium aurelia consists of a linear genome and that replication of this genome is initiated at one terminus and proceeds unidirectionally to the other terminus. Analyses of mitochondria from four closely related species (1, 4, 5, and 7) indicated that the species 1, 5, and 7 DNAs are essentially completely homologous but that the species 4 mitochondrial DNA is only 40 to 50% homologous with that from species 1. The major regions of homology are those containing the genes for ribosomal ribonucleic acid (RNA). To understand the replication and organization of the linear mitochondrial genome better, we compared species 1 (Paramecium primaurelia) and 4 (Paramecium tetraaurelia) DNAs with regard to restriction fragment mapping and homology between initiation regions; we also identified the sites of the genes for ribosomal RNA. In general, the structures of the species 1 and 4 mitochondrial genomes were quite similar. Each ribosomal RNA gene was present in one copy per genome, with the large ribosomal RNA gene located near the terminal region of replication and the small ribosomal RNA gene located more centrally. These two genes were separated by about 10 kilobases in the species 1 genome and by about 12 kilobases in the species 4 genome. In contrast to our previous findings, by using nonstringent hybridization conditions we detected homology between the species 1 and 4 DNA fragments containing the initiation regions. We constructed recombinant DNA clones for many fragments, especially those containing the initiation region and the ribosomal RNA genes. We also constructed restriction enzyme maps for six enzymes for both P. primaurelia and P. tetraaurelia.


Sign in / Sign up

Export Citation Format

Share Document