scholarly journals The heterogeneity of arginases in rat tissues

1976 ◽  
Vol 153 (2) ◽  
pp. 469-478 ◽  
Author(s):  
A Herzfeld ◽  
S M Raper

Arginase reactions in rat tissues were shown to be catalysed by three isoenzymes which can be separated by bidirectional electrophoresis on polyacrylamide gels. Anodic electrophoresis reveals a migrating band (isoenzyme I) present in all-non-hepatic tissues except submaxillary gland and a non-migrating band found in all tissues. The latter is resolved by cathodic electrophoresis into isoenzymes III (characteristic of liver and submaxillary gland) and a non-moving band (isoenzyme II), present in kidney, intestine and pancreas. Sequential electrophoresis, in the two directions, of mixture of liver and kidney extracts in the same gel columns separated all three isoenzymes. Differences in the solubilization properties, heat-sensitivity and substrate specificity of arginases from different tissues could be correlated with their electrophoretic behaviour. L-Canavanine could replace arginine as substrate in extracts of kidney but not of liver. Both kidney isoenzymes hydrolysed L-canavanine equally well, whereas isoenzyme III from submaxillary gland showed only very low activity. Antiserum against liver arginase interacted with the enzyme with submaxillary gland, but did not inactivate or adsorb arginase from kidney, intestine or pancreas. The distribution of arginase among 16 normal adult rat tissues is presented; the improved, sensitive, assay method was applicable to tissues containing as little as 0.1% of the hepatic activity.

1971 ◽  
Vol 121 (1) ◽  
pp. 41-47 ◽  
Author(s):  
D. H. Williamson ◽  
Margaret W. Bates ◽  
M. Ann Page ◽  
H. A. Krebs

1. The activities in rat tissues of 3-oxo acid CoA-transferase (the first enzyme involved in acetoacetate utilization) were found to be highest in kidney and heart. In submaxillary and adrenal glands the activities were about one-quarter of those in kidney and heart. In brain it was about one-tenth and was less in lung, spleen, skeletal muscle and epididymal fat. No activity was detectable in liver. 2. The activities of acetoacetyl-CoA thiolase were found roughly to parallel those of the transferase except for liver and adrenal glands. The high activity in the latter two tissues may be explained by additional roles of thiolase, namely, the production of acetyl-CoA from fatty acids. 3. The activities of the two enzymes in tissues of mouse, gerbil, golden hamster, guinea pig and sheep were similar to those of rat tissues. The notable exception was the low activity of the transferase and thiolase in sheep heart and brain. 4. The activities of the transferase in rat tissues did not change appreciably in starvation, alloxan-diabetes or on fat-feeding, where the rates of ketone-body utilization are increased. Thiolase activity increased in kidney and heart on fat-feeding. 5. The activity of 3-hydroxybutyrate dehydrogenase did not change in rat brain during starvation. 6. The factors controlling the rate of ketone-body utilization are discussed. It is concluded that the activities of the relevant enzymes in the adult rat do not control the variations in the rate of ketone-body utilization that occur in starvation or alloxan-diabetes. The controlling factor in these situations is the concentration of the ketone bodies in plasma and tissues.


1979 ◽  
Author(s):  
T Harada ◽  
M Ohki ◽  
M Niwa ◽  
S Iwanaga

Limulus hemocyte lysate contains a proclotting enzyme, which is transformed to the active clotting enzyme in the presence of gram-negative bacterial endotoxins. The clotting enzyme coagulates a clottable protein, named coagulogen, contained also in the lysate. This gelation reaction of the lysate, named Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. We developed a new fluorogenic substrate, Boc-Leu-Gly-Arg-4-methylcoumarin amide, for Limulus clotting enzyme and established an enzymatic assay method for endotoxins, using the substrate. Because the endotoxin mediates the activation of proclotting enzyme in the lysate, the measurement of amidase activity could be applicable for quantitation of the endotoxins. In fact, the amidase activity determined fluorometrically increased by increasing concentration of E. coli 0111: B4 endotoxin added to the lysate, and a linear relationship between the toxin concentration and the activity was observed in the range of 5X10-6to 5xl0-2 µg endotoxin. The method was a fifty times more sensitive than that of the Limulus test and was very reproducible. However, the method was not directly applicable for the assay of endotoxins in circulating blood, as the amidase activity was strongly inhibited by antithrombin III and α2-plasmin inhibitor. Thus, some pretreatment with heat or chloroform on plasma samples before the assay was required.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Chen ◽  
Yingjun Xie ◽  
Xuan Zhong ◽  
Fei Chen ◽  
Yu Gong ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) are derived from multiple tissues, including amniotic fluid (AF-MSCs) and the umbilical cord (UC-MSCs). Although the therapeutic effect of MSCs on sepsis is already known, researchers have not determined whether the cells from different sources require different therapeutic schedules or exert different curative effects. We assessed the biofunction of the administration of AF-MSCs and UC-MSCs in rats with caecal ligation and puncture (CLP)-induced sepsis. Methods CLP was used to establish a disease model of sepsis in rats, and intravenous tail vein administration of AF-MSCs and UC-MSCs was performed to treat sepsis at 6 h after CLP. Two phases of animal experiments were implemented using MSCs harvested in saline with or without filtration. The curative effect was measured by determining the survival rate. Further effects were assessed by measuring proinflammatory cytokine levels, the plasma coagulation index, tissue histology and the pathology of the lung, liver and kidney. Results We generated rats with medium-grade sepsis with a 30–40% survival rate to study the curative effects of AF-MSCs and UC-MSCs. MSCs reversed CLP-induced changes in proinflammatory cytokine levels and coagulation activation. MSCs ameliorated CLP-induced histological and pathological changes in the lung, liver and kidney. AF-MSCs and UC-MSCs functioned differently in different tissues; UC-MSCs performed well in reducing the upregulation of inflammatory cytokine levels in the lungs and inhibiting the inflammatory cell infiltration into the liver capsule, while AF-MSCs performed well in inhibiting cell death in the kidneys and reducing the plasma blood urea nitrogen (BUN) level, an indicator of renal function. Conclusions Our studies suggest the safety and efficacy of AF-MSCs and UC-MSCs in the treatment of CLP-induced sepsis in rats and show that the cells potentially exert different curative effects on the main sepsis-affected tissues.


1991 ◽  
Vol 278 (1) ◽  
pp. 171-177 ◽  
Author(s):  
A J Rivett ◽  
S T Sweeney

The multicatalytic proteinase (MCP) is a high-molecular-mass non-lysosomal proteinase that gives rise to a characteristic pattern of bands of molecular mass 22-34 kDa on SDS/PAGE gels. Isoelectric-focusing gels of the enzyme purified from rat liver show 16 bands with isoelectric points in the range of pH 5-8.5. Two-dimensional PAGE gels reveal that there are more than the previously reported 13 polypeptides associated with the MCP from rat liver and show a pattern of 15-20 major spots and several minor ones, similar to that of MCP isolated from some other sources. Possible relationships between the different polypeptides were investigated by immunoblot analysis of electrophoretically purified proteinase subunits with affinity-purified subunit-specific antibodies as well as antibodies raised against individual denatured subunits of the complex. The results demonstrate that many of the major polypeptide components of the MCP complex are antigenically distinct. Moreover comparison of immunoreactive material in crude cell extracts with that in purified MCP preparations has shown that the polypeptides are not derived from a smaller number of higher-molecular-mass subunits. Also, individual subunits have the same apparent molecular mass in a variety of rat tissues, suggesting close similarity between MCPs of different tissues. The highest concentrations of MCP subunits occur in liver and kidney. Gel-filtration analysis of crude extracts has demonstrated that MCP polypeptides are also associated with a higher-molecular-mass complex, which may be the 26 S proteinase that has been implicated in the degradation of ubiquitin-protein conjugates.


1997 ◽  
Vol 322 (2) ◽  
pp. 499-506 ◽  
Author(s):  
Toshihiko TOIDA ◽  
Hisao YOSHIDA ◽  
Hidenao TOYODA ◽  
Ichiro KOSHIISHI ◽  
Toshio IMANARI ◽  
...  

This study presents a comparison of heparan sulphate chains isolated from various porcine and bovine tissues. 1H-NMR spectroscopy (500 MHz) was applied for structural and compositional studies on intact heparan sulphate chains. After enzymic digestion of heparan sulphate using heparin lyase I (EC 4.2.2.7) II and III (EC 4.2.2.8), the compositions of unsaturated disaccharides obtained were determined by analytical capillary electrophoresis. Correlations between the N-sulphated glucosamine residues and O-sulphation and between iduronic acid content and total sulphation were discovered using the data obtained by NMR and disaccharide analysis. Heparan sulphate chains could be classified into two groups based on the sulphation degree and the iduronic acid content. Heparan sulphate chains with a high degree of sulphation possessed also a significant number of iduronic acid residues and were isolated exclusively from porcine brain, liver and kidney medulla. The presence and amount of N-unsubstituted glucosamine residues (GlcNp) was established in all of the heparan sulphates examined. The structural context in which this residue occurs was demonstrated to be: high sulphation domain → 4)-β-d-GlcAp-(1 → 4)-α-d-GlcNp-(1 → 4)-β-d-GlcAp-(1 → low sulphation domain (where GlcNp is 2-amino-2-deoxyglucopyranose, and GlcAp is glucopyranosyluronic acid), based on the isolation and characterization of a novel, heparin lyase III-derived, GlcNp containing tetrasaccharide and hexasaccharide. The results presented suggest that structural differences may play a role in important biological events controlled by heparan sulphate in different tissues.


Endocrinology ◽  
2001 ◽  
Vol 142 (10) ◽  
pp. 4195-4202 ◽  
Author(s):  
Pascal Escher ◽  
Olivier Braissant ◽  
Sharmila Basu-Modak ◽  
Liliane Michalik ◽  
Walter Wahli ◽  
...  

2012 ◽  
Vol 452-453 ◽  
pp. 1069-1073
Author(s):  
Yun Hua Hui ◽  
You Qiong Cai ◽  
Bing Feng ◽  
Wen Ruan ◽  
Hui Juan Yu

The pharmacokinetics of norfloxacin were investigated in the European eel after a single oral gavage of 10 mg norfloxacin per kg body weight. The concentrations of norfloxacin in the main tissues (kidney, muscle, hepatopancreas and blood) were simultaneously detected by HPLC. All of the concentration-time curves of norfloxacin in the plasma, muscle and liver were consistent with absorption of a two-compartment open kinetic model. Norfloxacin was widely distributed in different tissues in the European eel. Apparent volume of distribution (Vd) was 52.025 L/kg, 34.589 L/kg, 2.795 L/kg, and 0.969 L/kg, in plasma, muscle, liver and kidney, respectively. Norfloxacin in the eel was proved to eliminate slowly, and half-time (tβ1/2) in plasma, muscle, liver and kidney, was 201.222 h, 123.789 h, 120.634 h and 627473.495 h, respectively. Body clearance was 0.689 L / ( kg•h ), 1.793 L/( kg•h ), 0.097 L/( kg•h ) and 0.028 L /( kg•h ), in plasma, muscle, liver and kidney, respectively.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2205
Author(s):  
Mohamed S. Ahmed ◽  
Ahmed H. Massoud ◽  
Aly S. Derbalah ◽  
Ashraf Al-Brakati ◽  
Mohsin A. Al-Abdawani ◽  
...  

Evaluating potential adverse health impacts caused by pesticides is an important parameter in human toxicity. This study focuses on the importance of subchronic toxicity assessment of cymoxanil fungicide in rats with special reference to target biochemical enzymes and histopathological changes in different tissues. In this regard, a 21-day toxicity study with repeated cymoxanil oral doses was conducted. It has been shown that low doses (0.5 mg/kg) were less effective than medium (1 mg/kg) and high (2 mg/kg) doses. Moreover, high dose dose-treated rats showed piecemeal necrosis in the liver, interstitial nephritis and tubular degeneration in the kidneys, interstitial pneumonia and type II pneumocyte hyperplasia in the lungs, gliosis, spongiosis, and malacia in the brain, and testicular edema and degeneration in the testes. Cymoxanil significantly increased AST, ALT, and ALP in serum and liver, indicating tissue necrosis and possible leakage of these enzymes into the bloodstream. Creatinine levels increased, indicating renal damage. Similarly, significant inhibition was recorded in brain acetylcholinesterase, indicating that both synaptic transmission and nerve conduction were affected. Importantly, these histopathological and biochemical alterations were dose-dependent. Taken together, our study reported interesting biochemical and histopathological alterations in different rat tissues following repeated toxicity with oral doses of cymoxanil. Our study suggests future studies on different pesticides at different concentrations that would help urge governments to create more restrictive regulations concerning these compounds’ levels.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Liya Wang ◽  
Ren Sun ◽  
Staffan Eriksson

Abstract Background Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues. Results In addition to mitochondrial TK2 a cytosolic isoform of TK2 was characterized, which showed similar substrate specificity to the mitochondrial TK2. Total TK activity was highest in spleen and lowest in skeletal muscle. Thymidylate synthase (TS) was detected in cytosols and its activity was high in spleen but low in other tissues. TS protein levels were high in heart, brain and skeletal muscle, which deviated from TS activity levels. The p53R2 proteins were at similar levels in all tissues except liver where it was ~ 6-fold lower. Our results strongly indicate that mitochondria in most tissues are capable of producing enough dTTP for mtDNA replication via mitochondrial TK2, but skeletal muscle mitochondria do not and are most likely dependent on both the salvage and de novo synthesis pathways. Conclusion These results provide important information concerning mechanisms for the tissue dependent variation of dTTP synthesis and explained why deficiency in TK2 or p53R2 leads to skeletal muscle dysfunctions. Furthermore, the presence of a putative cytosolic TK2-like enzyme may provide basic knowledge for the understanding of deoxynucleoside-based therapy for mitochondrial disorders.


1990 ◽  
Vol 38 (10) ◽  
pp. 1479-1486 ◽  
Author(s):  
K J McCarthy ◽  
J R Couchman

Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan sulfate proteoglycans previously described.


Sign in / Sign up

Export Citation Format

Share Document