scholarly journals Destruction of liver haem by norethindrone. Conversion into green pigments

1981 ◽  
Vol 196 (2) ◽  
pp. 575-583 ◽  
Author(s):  
Ian N. H. White

1. Factors affecting the norethindrone-mediated conversion of hepatic haem into green pigments have been studied in the rat. Concentrations of haem and green pigments were estimated spectrophotometrically after esterification and separation by silica gel high-pressure liquid chromatography (h.p.l.c.). 2. Accumulation of green pigments in the liver was dependent on the dose of steroid and the time after dosing, maximum values being reached after 4–8h. Phenobarbitone pretreatment of rats resulted in an 8-fold increase in the concentration of green pigments at these times. 3. In microsomal systems in vitro, the formation of green pigments in the presence of NADPH and norethindrone was also dependent on the concentration of steroid and incubation times. Reaction rates very rapidly became non-linear with time, consistent with the self-catalysed destruction of the form(s) of cytochrome P-450 responsible for the metabolic activation of norethindrone. Microsomal mixtures incubated for a short period of time (1min) with norethindrone gave only one green-pigment peak after h.p.l.c. Longer incubation times gave four or five additional green pigments. Results suggested that multiple green pigments may arise by metabolic transformation of a single precursor. 4. When liver haem was prelabelled with 14C by using 5-amino[4-14C]laevulinic acid, subsequent dosing with norethindrone in vivo gave rise to three major 14C-labelled-green-pigment peaks on h.p.l.c. None of these components had the same retention times as the green pigments produced by microsomal fractions in vitro. 5. When liver haem was prelabelled with 59Fe by using 59FeCl3, norethindrone administration resulted in the detection of 59Fe-labelled green pigments if subsequent esterification was carried out under neutral conditions with trimethyloxonium tetrafluoroborate, but not when carried out under acidic conditions with methanol/H2SO4. These results suggested that green pigments normally contain chelated iron and that metal-free green pigments are not produced by the liver.

1978 ◽  
Vol 174 (3) ◽  
pp. 853-861 ◽  
Author(s):  
Ian N. H. White

1. A number of acetylenic-substituted steroidal and non-steroidal compounds, including 2,2-dipropargylacetamide, pregna-2,4-dien-20-yno[2,3-d]isoxazol-17-ol (Danazol) and acetylene gas, when administered to rats in vivo brought about a decrease in the concentrations of hepatic microsomal cytochrome P-450 and haem. Abnormal haem-breakdown products, ‘green pigments’, and porphyrins accumulated in the livers of these animals. 2. For loss of microsomal cytochrome P-450 to occur in vitro, metabolic activation of the acetylenic substituent was necessary. The enzyme system responsible required NADPH and air, and was induced by pretreatment of rats with phenobarbitone; these are characteristics typical of the microsomal mixed-function oxidases. 3. When rats were dosed with 17α-ethynyl-17β-hydroxyandrost-4-en-3-one (ethynyltestosterone, 1mmol/kg) the pattern of green pigments extracted from the liver 4h after dosing and separated by t.l.c. was quite different from that in rats given 17β-hydroxy-17α-vinylandrost-4-en-3-one (vinyltestosterone), suggesting that reduction of the unsaturated triple bond to a double bond is not normally part of the metabolic activation pathway of the acetylenic substituent. 4. The green pigments extracted from the livers of rats 4h after the administration of the acetylenic-substituted compounds (1mmol/kg) when separated by silica-gel t.l.c. had variable RF values. The number and distribution of green pigments was characteristic for each compound examined. There was little correlation between the total loss of hepatic microsomal haem and the apparent intensity of the green pigments seen on the thin-layer chromatograms. 5. After incubation of [14C]acetylene in vitro with microsomal preparations from phenobarbitone-pretreated rats and a NADPH-generating system, no significant covalent binding to microsomal protein was detected over a 30min incubation period, although under similar conditions there was a significant loss of cytochrome P-450.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


1988 ◽  
Vol 15 (3) ◽  
pp. 219-223
Author(s):  
Jørgen Clausen ◽  
Søren Achim Nielsen

The mixed-function oxygenase system involved in the metabolism of drugs and xenobiotics has been extensively studied in various animal species and in various organs (1). It is now apparent that in humans the p-450 complex is one representative of a related family, expressed by 13 c-DNA genes showing approximately 36% similarity between the different subfamilies (2). In order to compare the in vivo and in vitro metabolic effects of drugs and xenobiotics, the induction capabilities of the mixed-function oxygenase must be known. The most sensitive non-isotopic assay system for determination of mixed-function oxygenase activity is the method of Nebert & Gelboin (3,4), which is based on the metabolic transformation of benzo-(a)-pyrene to its fluorescent hydroxyl derivatives (5). However, the levels of the mixed-function oxygenase enzymes in different cellular systems show great variations, with the highest activities in liver cells. Therefore, in order to use human lymphocytes and other cellular systems with low mixed-function oxygenase activities, the assay method for determining oxygenase activity must have the highest possible sensitivity. The present communication is devoted to a study aimed at increasing the sensitivity of Nebert & Gelboin's methods for assay of mixed-function oxygenase subfamilies using benzo-(a)-pyrene as a substrate.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justin M. Waldern ◽  
Dorie Smith ◽  
Carol Lyn Piazza ◽  
E. Jake Bailey ◽  
Nicholas J. Schiraldi ◽  
...  

Abstract Background Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. Results To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. Conclusions Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.


1963 ◽  
Vol 204 (1) ◽  
pp. 171-175 ◽  
Author(s):  
W. S. Ruliffson ◽  
J. M. Hopping

The effects in rats, of age, iron-deficiency anemia, and ascorbic acid, citrate, fluoride, and ethylenediaminetetraacetate (EDTA) on enteric radioiron transport were studied in vitro by an everted gut-sac technique. Sacs from young animals transported more than those from older ones. Proximal jejunal sacs from anemic animals transported more than similar sacs from nonanemic rats, but the reverse effect appeared in sacs formed from proximal duodenum. When added to media containing ascorbic acid or citrate, fluoride depressed transport as did anaerobic incubation in the presence of ascorbic acid. Anaerobic incubation in the presence of EDTA appeared to permit elevated transport. Ascorbic acid, citrate, and EDTA all enhanced the level of Fe59 appearing in serosal media. These results appear to agree with previously established in vivo phenomena and tend to validate the in vitro method as one of promise for further studies of factors affecting iron absorption and of the mechanism of iron absorption.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


Sign in / Sign up

Export Citation Format

Share Document