scholarly journals Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4

2006 ◽  
Vol 400 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Mark A. Wells ◽  
Clare Jelinska ◽  
Laszlo L. P. Hosszu ◽  
C. Jeremy Craven ◽  
Anthony R. Clarke ◽  
...  

Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57–91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91–115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91–115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.

2006 ◽  
Vol 399 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Mark A. Wells ◽  
Graham S. Jackson ◽  
Samantha Jones ◽  
Laszlo L. P. Hosszu ◽  
C. Jeremy Craven ◽  
...  

It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Pascal Donsbach ◽  
Dagmar Klostermeier

Abstract RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for the non-sequence-specific interactions with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Seong-Jong Kim ◽  
Hye Hyeon Han ◽  
Sei Kwang Hahn

Abstract Background Wilson disease (WD) is a genetic disorder of copper storage, resulting in pathological accumulation of copper in the body. Because symptoms are generally related to the liver, chelating agents capable of capturing excess copper ions after targeted delivery to the liver are highly required for the treatment of WD. Methods We developed hyaluronate-diaminohexane/black phosphorus (HA-DAH/BP) complexes for capturing copper ions accumulated in the liver for the treatment of WD. Results HA-DAH/BP complexes showed high hepatocyte-specific targeting efficiency, selective copper capturing capacity, excellent biocompatibility, and biodegradability. HA enhanced the stability of BP nanosheets and increased copper binding capacity. In vitro cellular uptake and competitive binding tests verified targeted delivery of HA-DAH/BP complexes to liver cells via HA receptor mediated endocytosis. The cell viability test confirmed the high biocompatibility of HA-DAH/BP complexes. Conclusion HA-DAH/BP complexes would be an efficient copper chelating agent to remove accumulated copper in the liver for the WD treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


1969 ◽  
Vol 44 (3) ◽  
pp. 323-333 ◽  
Author(s):  
W. I. P. MAINWARING

SUMMARY The specificity of the binding of [1,2-3H]testosterone to nuclei of various rat tissues in vivo has been studied. A significant amount of radioactivity was retained in the nuclei of androgen-dependent tissues only, particularly the ventral prostate gland. The bound radioactivity was only partially recovered as [1,2-3H]testosterone; the remainder was identified as [3H]5α-dihydrotestosterone. Efforts were made to characterize the binding component, or 'receptor', in prostatic nuclei. On digestion of nuclei labelled in vivo with [1,2-3H]testosterone, with enzymes of narrow substrate specificity, only trypsin released tritium, suggesting that the receptor is a protein. On the basis of subfractionation studies of labelled nuclei, the receptor is an acidic protein. The androgen—receptor complex could be effectively extracted from the prostatic nuclei in 1 m-NaCl and from the results of fractionations on a calibrated agarose column, the complex has a molecular weight 100,000–120,000. The specificity of the binding of steroids to such 1 m-NaCl extracts in vitro was investigated by the equilibrium dialysis procedure. Under these conditions, the specificity of the binding of [1,2-3H]testosterone demonstrated in vivo could not be simulated. The receptor is probably part of the chromatin complex but its precise intranuclear localization cannot be determined by biochemical procedures alone.


1991 ◽  
Vol 114 (4) ◽  
pp. 773-786 ◽  
Author(s):  
P D Kouklis ◽  
T Papamarcaki ◽  
A Merdes ◽  
S D Georgatos

To identify sites of self-association in type III intermediate filament (IF) proteins, we have taken an "anti-idiotypic antibody" approach. A mAb (anti-Ct), recognizing a similar feature near the end of the rod domain of vimentin, desmin, and peripherin (epsilon site or epsilon epitope), was characterized. Anti-idiotypic antibodies, generated by immunizing rabbits with purified anti-Ct, recognize a site (presumably "complementary" to the epsilon epitope) common among vimentin, desmin, and peripherin (beta site or beta epitope). The beta epitope is represented in a synthetic peptide (PII) modeled after the 30 COOH-terminal residues of peripherin, as seen by comparative immunoblotting assays. Consistent with the idea of an association between the epsilon and the beta site, PII binds in vitro to intact IF proteins and fragments containing the epsilon epitope, but not to IF proteins that do not react with anti-Ct. Microinjection experiments conducted in vivo and filament reconstitution assays carried out in vitro further demonstrate that "uncoupling" of this site-specific association (by competition with PII or anti-Ct) interferes with normal IF architecture, resulting in the formation of filaments and filament bundles with diameters much greater than that of the normal IFs. These thick fibers are very similar to the ones observed previously when a derivative of desmin missing 27 COOH-terminal residues was assembled in vitro (Kaufmann, E., K. Weber, and N. Geisler. 1985. J. Mol. Biol. 185:733-742). As a molecular explanation, we propose here that the epsilon and the beta sites of type III IF proteins are "complementary" and associate during filament assembly. As a result of this association, we further postulate the formation of a surface-exposed "loop" or "hairpin" structure that may sterically prevent inappropriate filament-filament aggregation and regulate filament thickness.


1993 ◽  
Vol 13 (9) ◽  
pp. 5710-5724
Author(s):  
E DesJardins ◽  
N Hay

Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.


1987 ◽  
Vol 7 (1) ◽  
pp. 314-325
Author(s):  
C A Harrington ◽  
D M Chikaraishi

The transcriptional activity of spacer sequences flanking the rat 45S ribosomal DNA (rDNA) gene were studied. Nascent RNA labeled in in vitro nuclear run-on reactions hybridized with both 5' and 3' spacer regions. The highest level of hybridization was seen with an rDNA fragment containing tandem repeats of a 130-base-pair sequence upstream of the 45S rRNA initiation site. Synthesis of RNA transcripts homologous to this internally repetitious spacer region was insensitive to high levels of alpha-amanitin, suggesting that it is mediated by RNA polymerase I. Analysis of steady-state RNA showed that these transcripts were present at extremely low levels in vivo relative to precursor rRNA transcripts. In contrast, precursor and spacer run-on RNAs were synthesized at similar levels. This suggests that spacer transcripts are highly unstable in vivo; therefore, it may be the process of transcription rather than the presence of spacer transcripts that is functionally important. Transcription in this upstream rDNA region may be involved in regulation of 45S rRNA synthesis in rodents, as has been suggested previously for frog rRNA. In addition, the presence of transcriptional activity in other regions of the spacer suggests that some polymerase I molecules may transcribe through the spacer from one 45S gene to the next on rodent rDNA.


Sign in / Sign up

Export Citation Format

Share Document