scholarly journals Nutrient-responsive mTOR signalling grows on Sterile ground

2007 ◽  
Vol 403 (1) ◽  
Author(s):  
Simon J. Cook ◽  
Simon J. Morley

The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.

2007 ◽  
Vol 403 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Greg M. Findlay ◽  
Lijun Yan ◽  
Julia Procter ◽  
Virginie Mieulet ◽  
Richard F. Lamb

The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.


2001 ◽  
pp. 543-548 ◽  
Author(s):  
I Eude ◽  
E Dallot ◽  
MC Vacher-Lavenu ◽  
C Chapron ◽  
F Ferre ◽  
...  

OBJECTIVE: Factors responsible for the abnormal proliferation of myometrial cells that accompanies leiomyoma formation are unknown, although steroid hormones and peptide growth factors have been implicated. We hypothesized that endothelin-1 (ET-1) is a physiological regulator of tumor growth. DESIGN: In this study, we investigated the role of ET-1 on growth of human leiomyoma cells and its synergistic effect with growth factors, as well as the signaling pathway involved in this interaction. METHODS: Leiomyoma cell proliferation was assayed by [H]thymidine incorporation and cell number. Protein kinase C (PKC) isoforms were analyzed by Western blot using specific antibodies. RESULTS: ET-1 on its own was unable to stimulate DNA synthesis but potentiated the leiomyoma cell growth effects of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), IGF-I and IGF-II. The failure of a protein tyrosine kinase (PTK) inhibitor, tyrphostin 51, to affect the potentiating effect of ET-1, supports the hypothesis of non-involvement of PTK in this process. The inhibition of PKC by calphostin C or its down-regulation by phorbol 12,13-dibutyrate (PDB) eliminated the potentiating effect of ET-1, but did not block cell proliferation induced by the growth factors alone. Five PKC isoforms (alpha, beta1, epsilon, delta and zeta) were detected in leiomyoma cells, but only phorbol ester-sensitive PKC isoforms (PKCalpha, epsilon and delta) contribute to the potentiating effect of leiomyoma cell growth by ET-1. CONCLUSIONS: We have demonstrated that ET-1 potentiates leiomyoma cell proliferation to growth factors through a PKC-dependent pathway. These findings suggest a possible involvement of ET-1 in the pathogenesis of leiomyomas.


1999 ◽  
Vol 112 (24) ◽  
pp. 4485-4489 ◽  
Author(s):  
C. Wu

Integrin-linked kinase (ILK) is a focal adhesion serine/threonine protein kinase that is emerging as a key signaling protein functioning at one of the early convergence points of integrin- and growth factor-signaling pathways. ILK binds to PINCH through the N-terminal ankyrin (ANK) repeat domain and the PINCH binding is crucial for focal adhesion localization of ILK. The ILK-PINCH interaction also connects ILK to Nck-2, an SH2-SH3-containing adaptor protein that interacts with components of growth factor and small GTPase signaling pathways. The kinase activity of ILK is regulated by both cell adhesion and growth factors in a phosphoinositide 3-kinase (PI3K)-dependent manner. ILK phosphorylates downstream targets such as protein kinase B (PKB, also known as Akt) and glycogen synthase kinase 3 (GSK-3) and regulates their activities. Overexpression of ILK in epithelial cells leads to striking morphological changes mimicking epithelial-mesenchymal transition, including upregulation of integrin-mediated fibronectin matrix assembly and downregulation of cell-cell adhesions. Furthermore, ILK regulates nuclear translocation of (beta)-catenin and gene expression, and promotes cell cycle progression and tumor formation. Recent genetic studies in Drosophila melanogaster and Caenorhabditis elegans have shown that lack of expression of ILK or PINCH results in phenotypes resembling those of integrin-null mutants, which demonstrates that ILK and PINCH are indispensable for integrin function during embryonic development.


1990 ◽  
Vol 10 (12) ◽  
pp. 6769-6774
Author(s):  
C H Charles ◽  
J S Simske ◽  
T P O'Brien ◽  
L F Lau

pip92 is a cellular immediate-early gene inducible by serum growth factors in fibroblasts. It is also induced in the rat pheochromocytoma cell line PC12 by agents that cause proliferation, neuronal differentiation, and membrane depolarization. We show that the pip92-encoded polypeptide is a proline-rich protein of 221 amino acids, has an extremely short half-life, and is localized in the cytoplasm. We hypothesize that Pip92 plays a role in mediating the cellular responses to a variety of extracellular signals.


1987 ◽  
Vol 80 (9) ◽  
pp. 591-593
Author(s):  
A J Barrett

At this meeting of the RSM's Section of Pathology, the regulation of haemopoietic stem cells and growth factors regulating various cell lines were described, and the role of oncogenes, platelet-derived growth factor and nerve growth factor in growth regulation was discussed.


1995 ◽  
Vol 15 (3) ◽  
pp. 440-449 ◽  
Author(s):  
Kenneth Maiese ◽  
Lauraine Boccone

Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) are neuroprotective during anoxia and nitric oxide (NO) toxicity. Signal transduction systems that modulate protein kinase C (PKC) also can modulate the toxic effects of anoxia and NO. We therefore examined whether PKC was involved in the protective effects of bFGF and EGF during anoxia and NO toxicity. Down-regulation or inhibition of PKC activity before anoxia or NO exposure prevented hippocampal neuronal degeneration. Yet, this protective effect of inhibition of PKC activity was not present with the coadministration of growth factors. Combined inhibition of PKC activity and application of bFGF or EGF lessened the protective mechanisms of the growth factors. In addition, the protective ability of the growth factors was lost during anoxia and NO exposure with the activation of PKC, suggesting that at least a minimal degree of PKC activation is necessary for growth factor protection. Although modulation of PKC activity may be a necessary prerequisite for protection against anoxia and NO toxicity by bFGF and EGF, only inhibition of PKC activity, rather than application of the growth factors, was protective following exposure to NO. These results suggest that the mechanism of protection by bFGF and EGF during anoxia and NO toxicity appears initially to be dependent on a minimum degree of PKC activation, but that other signal transduction pathways independent of PKC also may mediate protection by peptide growth factors.


2019 ◽  
Vol 7 (10) ◽  
pp. 4283-4298 ◽  
Author(s):  
Waddah Malaeb ◽  
Hisham F. Bahmad ◽  
Wassim Abou-Kheir ◽  
Rami Mhanna

This work shows that alginates can be sulfated to engineer defined substrates that control growth factor binding and neural growth.


2000 ◽  
Vol 350 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Luz DEL CARMEN MEDINA ◽  
José VÁZQUEZ-PRADO ◽  
J. Adolfo GARCÍA-SÁINZ

The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of α1b-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyrosine kinase activities of the receptors for these growth factors. Wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the α1b-adrenoceptor phosphorylation induced by EGF but not that induced by PDGF. Inhibition of protein kinase C blocked the adrenoceptor phosphorylation induced by EGF and PDGF. The ability of noradrenaline to increase [35S]guanosine 5´-[γ-thio]triphosphate ([35S]GTP[S]) binding in membrane preparations was used as an index of the functional coupling of the α1b-adrenoceptors and G-proteins. Noradrenaline-stimulated [35S]GTP[S] binding was markedly decreased in membranes from cells pretreated with EGF or PDGF. Our data indicate that: (i) activation of EGF and PDGF receptors induces phosphorylation of α1b-adrenoceptors, (ii) phosphatidylinositol 3-kinase is involved in the EGF response, but does not seem to play a major role in the action of PDGF, (iii) protein kinase C mediates this action of both growth factors and (iv) the phosphorylation of α1b-adrenoceptors induced by EGF and PDGF is associated with adrenoceptor desensitization.


2001 ◽  
Vol 21 (17) ◽  
pp. 5899-5912 ◽  
Author(s):  
Matthew G. Vander Heiden ◽  
David R. Plas ◽  
Jeffrey C. Rathmell ◽  
Casey J. Fox ◽  
Marian H. Harris ◽  
...  

ABSTRACT Cells from multicellular organisms are dependent upon exogenous signals for survival, growth, and proliferation. The relationship among these three processes was examined using an interleukin-3 (IL-3)-dependent cell line. No fixed dose of IL-3 determined the threshold below which cells underwent apoptosis. Instead, increasing growth factor concentrations resulted in progressive shortening of the G1 phase of the cell cycle and more rapid proliferative expansion. Increased growth factor concentrations also resulted in proportional increases in glycolytic rates. Paradoxically, cells growing in high concentrations of growth factor had an increased susceptibility to cell death upon growth factor withdrawal. This susceptibility correlated with the magnitude of the change in the glycolytic rate following growth factor withdrawal. To investigate whether changes in the availability of glycolytic products influence mitochondrion-initiated apoptosis, we artificially limited glycolysis by manipulating the glucose levels in the medium. Like growth factor withdrawal, glucose limitation resulted in Bax translocation, a decrease in mitochondrial membrane potential, and cytochromec redistribution to the cytosol. In contrast, increasing cell autonomous glucose uptake by overexpression of Glut1 significantly delayed apoptosis following growth factor withdrawal. These data suggest that a primary function of growth factors is to regulate glucose uptake and metabolism and thus maintain mitochondrial homeostasis and enable anabolic pathways required for cell growth. Consistent with this hypothesis, expression of the three genes involved in glucose uptake and glycolytic commitment, those for Glut1, hexokinase 2, and phosphofructokinase 1, was found to rapidly decline to nearly undetectable levels following growth factor withdrawal.


Sign in / Sign up

Export Citation Format

Share Document