The human SIRT3 protein deacetylase is exclusively mitochondrial

2008 ◽  
Vol 411 (2) ◽  
pp. 279-285 ◽  
Author(s):  
Helen M. Cooper ◽  
Johannes N. Spelbrink

It has recently been suggested that perhaps as many as 20% of all mitochondrial proteins are regulated through lysine acetylation while SIRT3 has been implicated as an important mitochondrial protein deacetylase. It is therefore of crucial importance that the mitochondrial localization of potential protein deacetylases is unambiguously established. Although mouse SIRT3 was recently shown to be mitochondrial, HsSIRT3 (human SIRT3) was reported to be both nuclear and mitochondrial and to relocate from the nucleus to the mitochondrion upon cellular stress. In the present study we show, using various HsSIRT3 expression constructs and a combination of immunofluorescence and careful subcellular fractionation, that in contrast with earlier reports HsSIRT3 is exclusively mitochondrial. We discuss possible experimental explanations for these discrepancies. In addition we suggest, on the basis of the analysis of public genome databases, that the full-length mouse SIRT3 protein is a 37 kDa mitochondrial precursor protein contrary to the previously suggested 29 kDa protein.

BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2021 ◽  
Author(s):  
Selma L. van Esveld ◽  
Lisette Meerstein-Kessel ◽  
Cas Boshoven ◽  
Jochem F. Baaij ◽  
Konstantin Barylyuk ◽  
...  

AbstractPlasmodium species have a single mitochondrion that is essential for their survival and has been successfully targeted by anti-malarial drugs. Most proteins are imported into this organelle and our picture of the Plasmodium mitochondrial proteome remains incomplete. Many data sources contain information about mitochondrial localization, including proteome and gene expression profiles, orthology to mitochondrial proteins from other species, co-evolutionary relationships, and amino acid sequences, each with different coverage and reliability. To obtain a comprehensive, prioritized list of Plasmodium falciparum mitochondrial proteins, we rigorously analyzed and integrated eight datasets using Bayesian statistics into a predictive score per protein for mitochondrial localization. At a corrected false discovery rate of 25%, we identified 295 proteins with a sensitivity of 65% and a specificity of 98%. They include proteins that have not been identified as mitochondrial in other eukaryotes but have characterized homologs in bacteria that are involved in metabolism or translation. Mitochondrial localization of seven Plasmodium berghei orthologs was confirmed by epitope labeling and co-localization with a mitochondrial marker protein. One of these belongs to a newly identified apicomplexan mitochondrial protein family that in P. falciparum has four members. With the experimentally validated mitochondrial proteins and the complete ranked P. falciparum proteome, which we have named PlasmoMitoCarta, we present a resource to study unique proteins of Plasmodium mitochondria.


2007 ◽  
Vol 27 (24) ◽  
pp. 8807-8814 ◽  
Author(s):  
David B. Lombard ◽  
Frederick W. Alt ◽  
Hwei-Ling Cheng ◽  
Jakob Bunkenborg ◽  
Ryan S. Streeper ◽  
...  

ABSTRACT Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


Author(s):  
Jessica N. Peoples ◽  
Nasab Ghazal ◽  
Duc M. Duong ◽  
Katherine R. Hardin ◽  
Janet R. Manning ◽  
...  

Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yusuke Kanamaru ◽  
Shiori Sekine ◽  
Hidenori Ichijo ◽  
Kohsuke Takeda

To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5) in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1), facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1) in mammals and stress-responsive mitogen-activated protein (MAP) kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Magdalena Kremer ◽  
Nora Kuhlmann ◽  
Marius Lechner ◽  
Linda Baldus ◽  
Michael Lammers

Lysine acetylation is a post-translational modification that is conserved from bacteria to humans. It is catalysed by the activities of lysine acetyltransferases, which use acetyl-CoA as the acetyl-donor molecule, and lysine deacetylases, which remove the acetyl moiety. Recently, it was reported that YcgC represents a new prokaryotic deacetylase family with no apparent homologies to existing deacetylases (Tu et al., 2015). Here we report the results of experiments which demonstrate that YcgC is not a deacetylase.


1999 ◽  
Vol 147 (2) ◽  
pp. 277-294 ◽  
Author(s):  
Wim G. Annaert ◽  
Lyne Levesque ◽  
Kathleen Craessaerts ◽  
Inge Dierinck ◽  
Greet Snellings ◽  
...  

Mutations of presenilin 1 (PS1) causing Alzheimer's disease selectively increase the secretion of the amyloidogenic βA4(1-42), whereas knocking out the gene results in decreased production of both βA4(1-40) and (1-42) amyloid peptides (De Strooper et al. 1998). Therefore, PS1 function is closely linked to the γ-secretase processing of the amyloid precursor protein (APP). Given the ongoing controversy on the subcellular localization of PS1, it remains unclear at what level of the secretory and endocytic pathways PS1 exerts its activity on APP and on the APP carboxy-terminal fragments that are the direct substrates for γ-secretase. Therefore, we have reinvestigated the subcellular localization of endogenously expressed PS1 in neurons in vitro and in vivo using confocal microscopy and fine-tuned subcellular fractionation. We show that uncleaved PS1 holoprotein is recovered in the nuclear envelope fraction, whereas the cleaved PS fragments are found mainly in post-ER membranes including the intermediate compartment (IC). PS1 is concentrated in discrete sec23p- and p58/ERGIC-53–positive patches, suggesting its localization in subdomains involved in ER export. PS1 is not found to significant amounts beyond the cis-Golgi. Surprisingly, we found that APP carboxy-terminal fragments also coenrich in the pre-Golgi membrane fractions, consistent with the idea that these fragments are the real substrates for γ-secretase. Functional evidence that PS1 exerts its effects on γ-secretase processing of APP in the ER/IC was obtained using a series of APP trafficking mutants. These mutants were investigated in hippocampal neurons derived from transgenic mice expressing PS1wt or PS1 containing clinical mutations (PS1M146L and PS1L286V) at physiologically relevant levels. We demonstrate that the APP-London and PS1 mutations have additive effects on the increased secretion of βA4(1-42) relative to βA4(1-40), indicating that both mutations operate independently. Overall, our data clearly establish that PS1 controls γ42-secretase activity in pre-Golgi compartments. We discuss models that reconcile this conclusion with the effects of PS1 deficiency on the generation of βA4(1-40) peptide in the late biosynthetic and endocytic pathways.


1999 ◽  
Vol 26 (8) ◽  
pp. 725 ◽  
Author(s):  
James Whelan

The characterisation of components of the plant mitochondrial import apparatus along with the availability of over one hundred nuclear-encoded mitochondrial proteins allows the study of plant mitochondrial protein import in homologous systems. From these studies it has emerged that although similarities in the import process exist with other organisms, significance differences exist, such as receptor structure, location of processing peptidase and targeting signals. These differences mean that previous studies carried out in heterologous systems must be re-evaluated. Further studies into protein import in plants need to be directed at understanding the mechanism of import and how this process may be controlled. In this review the latter points will be dealt with in terms of summarising our current knowledge and possible future directions.


Sign in / Sign up

Export Citation Format

Share Document