scholarly journals Characterization of two distinct binding modes between syntaxin 4 and Munc18c

2009 ◽  
Vol 419 (3) ◽  
pp. 655-660 ◽  
Author(s):  
Veronica Aran ◽  
Fiona M. Brandie ◽  
Alasdair R. Boyd ◽  
Theodoros Kantidakis ◽  
Elizabeth J. Rideout ◽  
...  

Interaction of SM (Sec1/Munc18) proteins with their cognate syntaxins represents an important regulatory mechanism of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor)-mediated membrane fusion. Understanding the conserved mechanisms by which SM proteins function in this process has proved challenging, largely due to an apparent lack of conservation of binding mechanisms between different SM–syntaxin pairs. In the present study, we have identified a hitherto uncharacterized mode of binding between syntaxin 4 and Munc18c that is independent of the binding mode shown previously to utilize the N-terminal peptide of syntaxin 4. Our data demonstrate that syntaxin 4 and Munc18c interact via two distinct modes of binding, analogous to those employed by syntaxin 1a–Munc18a and syntaxin 16–Vps45p (vacuolar protein sorting 45). These data support the notion that all syntaxin/SM proteins bind using conserved mechanisms, and pave the way for the formulation of unifying hypotheses of SM protein function.

2009 ◽  
Vol 418 (1) ◽  
pp. e1-e3 ◽  
Author(s):  
Mary Munson ◽  
Nia J. Bryant

Intracellular membrane fusion steps in eukaryotes require the syntaxin family of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins. Syntaxins are regulated at several levels through interactions with regulatory proteins, including the SM (Sec1p/Munc18) proteins. Key to understanding this regulation is the characterization of different SM–syntaxin binding interactions at the molecular level and in terms of their contribution to function in vivo. The most conserved SM–syntaxin binding mode is through interaction of the syntaxin's extreme N-terminal peptide with a hydrophobic pocket on the surface of the SM protein. Surprisingly, mutant versions of two different SM proteins abrogated for this binding display no discernable phenotypes in vivo. In this issue of the Biochemical Journal, Johnson et al. demonstrate that loss of the N-terminal binding interaction between the syntaxin UNC-64 and the SM protein UNC-18 severely impairs neuromuscular synaptic transmission in Caenorhabditis elegans, resulting in an unco-ordinated phenotype. In contrast, loss of a second mode of SM–syntaxin binding has no detectable effect. Collectively, these results suggest that, although different membrane trafficking steps are all regulated by SM–syntaxin interactions using similar binding modes, they are differentially regulated, highlighting the need for careful dissection of the binding modes.


Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 61 ◽  
Author(s):  
Fernando Prieto-Martínez ◽  
José Medina-Franco

Flavonoids are widely recognized as natural polydrugs, given their anti-inflammatory, antioxidant, sedative, and antineoplastic activities. Recently, different studies showed that flavonoids have the potential to inhibit bromodomain and extraterminal (BET) bromodomains. Previous reports suggested that flavonoids bind between the Z and A loops of the bromodomain (ZA channel) due to their orientation and interactions with P86, V87, L92, L94, and N140. Herein, a comprehensive characterization of the binding modes of fisetin and the biflavonoid, amentoflavone, is discussed. To this end, both compounds were docked with BET bromodomain 4 (BRD4) using four docking programs. The results were post-processed with protein–ligand interaction fingerprints. To gain further insight into the binding mode of the two natural products, the docking results were further analyzed with molecular dynamics simulations. The results showed that amentoflavone makes numerous contacts in the ZA channel, as previously described for flavonoids and kinase inhibitors. It was also found that amentoflavone can potentially make contacts with non-canonical residues for BET inhibition. Most of these contacts were not observed with fisetin. Based on these results, amentoflavone was experimentally tested for BRD4 inhibition, showing activity in the micromolar range. This work may serve as the basis for scaffold optimization and the further characterization of flavonoids as BET inhibitors.


2010 ◽  
Vol 21 (8) ◽  
pp. 1362-1374 ◽  
Author(s):  
Marion Weber ◽  
Konstantin Chernov ◽  
Hilkka Turakainen ◽  
Gerd Wohlfahrt ◽  
Maria Pajunen ◽  
...  

Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p–Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.


2012 ◽  
Vol 23 (23) ◽  
pp. 4611-4622 ◽  
Author(s):  
Braden T. Lobingier ◽  
Alexey J. Merz

Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.


2004 ◽  
Vol 15 (6) ◽  
pp. 2593-2605 ◽  
Author(s):  
Shoba Subramanian ◽  
Carol A. Woolford ◽  
Elizabeth W. Jones

The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Δ cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.


2020 ◽  
Vol 21 (20) ◽  
pp. 7677
Author(s):  
Marica Gemei ◽  
Carmine Talarico ◽  
Laura Brandolini ◽  
Candida Manelfi ◽  
Lorena Za ◽  
...  

The kinin B1 receptor plays a critical role in the chronic phase of pain and inflammation. The development of B1 antagonists peaked in recent years but almost all promising molecules failed in clinical trials. Little is known about these molecules’ mechanisms of action and additional information will be necessary to exploit the potential of the B1 receptor. With the aim of contributing to the available knowledge of the pharmacology of B1 receptors, we designed and characterized a novel class of allosteric non-peptidic inhibitors with peculiar binding characteristics. Here, we report the binding mode analysis and pharmacological characterization of a new allosteric B1 antagonist, DFL20656. We analyzed the binding of DFL20656 by single point mutagenesis and radioligand binding assays and we further characterized its pharmacology in terms of IC50, B1 receptor internalization and in vivo activity in comparison with different known B1 antagonists. We highlighted how different binding modes of DFL20656 and a Merck compound (compound 14) within the same molecular pocket can affect the biological and pharmacological properties of B1 inhibitors. DFL20656, by its peculiar binding mode, involving tight interactions with N114, efficiently induced B1 receptor internalization and evoked a long-lasting effect in an in vivo model of neuropathic pain. The pharmacological characterization of different B1 antagonists highlighted the effects of their binding modes on activity, receptor occupancy and internalization. Our results suggest that part of the failure of most B1 inhibitors could be ascribed to a lack of knowledge about target function and engagement.


2008 ◽  
Vol 19 (9) ◽  
pp. 3836-3846 ◽  
Author(s):  
Jason M. McEwen ◽  
Joshua M. Kaplan

The SM protein UNC-18 has been proposed to regulate several aspects of secretion, including synaptic vesicle docking, priming, and fusion. Here, we show that UNC-18 has a chaperone function in neurons, promoting anterograde transport of the plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein Syntaxin-1. In unc-18 mutants, UNC-64 (Caenorhabditis elegans Syntaxin-1) accumulates in neuronal cell bodies. Colocalization studies and analysis of carbohydrate modifications both suggest that this accumulation occurs in the endoplasmic reticulum. This trafficking defect is specific for UNC-64 Syntaxin-1, because 14 other SNARE proteins and two active zone markers were unaffected. UNC-18 binds to Syntaxin through at least two mechanisms: binding to closed Syntaxin, or to the N terminus of Syntaxin. It is unclear which of these binding modes mediates UNC-18 function in neurons. The chaperone function of UNC-18 was eliminated in double mutants predicted to disrupt both modes of Syntaxin binding, but it was unaffected in single mutants. By contrast, mutations predicted to disrupt UNC-18 binding to the N terminus of Syntaxin caused significant defects in locomotion behavior and responsiveness to cholinesterase inhibitors. Collectively, these results demonstrate the UNC-18 acts as a molecular chaperone for Syntaxin transport in neurons and that the two modes of UNC-18 binding to Syntaxin are involved in different aspects of UNC-18 function.


2017 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


2018 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


Sign in / Sign up

Export Citation Format

Share Document