The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation

2012 ◽  
Vol 444 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Chenji Wang ◽  
Jian An ◽  
Pingzhao Zhang ◽  
Chen Xu ◽  
Kun Gao ◽  
...  

AMOT (angiomotin) is a membrane-associated protein that is expressed in ECs (endothelial cells) and controls migration, TJ (tight junction) formation, cell polarity and angiogenesis. Recent studies have revealed that AMOT and two AMOT-like proteins, AMOTL1 and AMOTL2, play critical roles in the Hippo pathway by regulating the subcellular localization of the co-activators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif). However, it has been unclear how AMOT is regulated. In the present study, we report that AMOT undergoes proteasomal degradation. We identify three members of Nedd4 (neural-precursor-cell-expressed developmentally down-regulated)-like ubiquitin E3 ligases, Nedd4, Nedd4-2 and Itch, as the ubiquitin E3 ligases for the long isoform of AMOT, AMOT/p130. We demonstrate that Nedd4, Nedd4-2 and Itch mediate poly-ubiquitination of AMOT/p130 in vivo. Overexpression of Nedd4, Nedd4-2 or Itch leads to AMOT/p130 proteasomal degradation. Knockdown of Nedd4, Nedd4-2 and Itch causes an accumulation of steady-state level of AMOT/p130. We also show that three L/P-PXY motifs of AMOT/p130 and the WW domains of Nedd4 mediate their interaction. Furthermore, Nedd4-like ubiquitin E3 ligases might compete with YAP for the binding to AMOT/p130, and subsequently targeting AMOT/p130 for ubiquitin-dependent degradation. Together, these observations reveal a novel post-translational regulatory mechanism of AMOT/p130.

2017 ◽  
Vol 114 (7) ◽  
pp. 1678-1683 ◽  
Author(s):  
Matan Shanzer ◽  
Julia Adler ◽  
Inna Ricardo-Lax ◽  
Nina Reuven ◽  
Yosef Shaul

The polyomavirus middle T antigen (PyMT) oncogene activates the cellular nonreceptor tyrosine kinase c-Src and recruits the Hippo pathway effectors, Yap (yes-associated protein) and Taz (transcriptional coactivator with PDZ-binding motif), as key steps in oncogenesis. Yap and Taz are transcription coactivators shuttling from the cytoplasm to the nucleus. The Hippo pathway kinase Lats1/2 (large tumor suppressor homolog) reduces Yap/Taz nuclear localization and minimizes their cytoplasmic levels by facilitating their ubiquitination by the E3 ligase SCF(β-TrCP). In contrast, PyMT increases the cytoplasmic Taz level. Here we show that this unique PyMT behavior is mediated by Src. We demonstrate that PyMT-induced Src activation inhibits degradation of both wild-type and tyrosine-less Taz, ruling out Taz modification as a mechanism of escaping degradation. Instead, we found that Src attenuates the SCF(β-TrCP) E3-ligase activity in blunting Taz proteasomal degradation. The role of Src in rescuing Taz from TrCP-mediated degradation gives rise to higher cell proliferation under dense cell culture. Finally, IkB (NF-kappa-B inhibitor), a known substrate of β-TrCP, was rescued by Src, suggesting a wider effect of Src on β-TrCP substrates. These findings introduce the Src tyrosine kinase as a regulator of SCF(β-TrCP).


Author(s):  
Diwas Srivastava ◽  
Marion de Toledo ◽  
Laurent Manchon ◽  
Jamal Tazi ◽  
François Juge

AbstractThe mechanisms that contribute to developmental stability are barely known. Here we show that alternative splicing of yorkie (yki) is required for developmental stability in Drosophila. Yki encodes the effector of the Hippo pathway that has a central role in controlling organ growth and regeneration. We identify the splicing factor B52 as necessary for inclusion of yki alternative exon 3 that encodes one of the two WW domains of Yki protein. B52 depletion favors expression of Yki1 isoform carrying a single WW domain, and reduces growth in part through modulation of yki alternative splicing. Compared to the canonical Yki2 isoform containing two WW domains, Yki1 isoform has reduced transcriptional and growth-promoting activities, decreased binding to PPxY-containing partners, and lacks the ability to bridge two proteins containing PPxY motifs. Yet, Yki1 and Yki2 interact similarly with transcription factors and can thus compete in vivo. Strikingly, flies deprived from Yki1 isoform exhibit increased fluctuating wing asymmetry, a signal of increased developmental noise. Our results identify yki alternative splicing as a new level of control of the Hippo pathway and provide the first experimental evidence that alternative splicing participates in developmental robustness.


2010 ◽  
Vol 432 (3) ◽  
pp. 461-478 ◽  
Author(s):  
Tsutomu Oka ◽  
Eline Remue ◽  
Kris Meerschaert ◽  
Berlinda Vanloo ◽  
Ciska Boucherie ◽  
...  

The Hippo pathway regulates the size of organs by controlling two opposing processes: proliferation and apoptosis. YAP2 (Yes kinase-associated protein 2), one of the three isoforms of YAP, is a WW domain-containing transcriptional co-activator that acts as the effector of the Hippo pathway in mammalian cells. In addition to WW domains, YAP2 has a PDZ-binding motif at its C-terminus. We reported previously that this motif was necessary for YAP2 localization in the nucleus and for promoting cell detachment and apoptosis. In the present study, we show that the tight junction protein ZO (zonula occludens)-2 uses its first PDZ domain to form a complex with YAP2. The endogenous ZO-2 and YAP2 proteins co-localize in the nucleus. We also found that ZO-2 facilitates the nuclear localization and pro-apoptotic function of YAP2, and that this activity of ZO-2 is PDZ-domain-dependent. The present paper is the first report on a PDZ-based nuclear translocation mechanism. Moreover, since the Hippo pathway acts as a tumour suppressor pathway, the YAP2–ZO-2 complex could represent a target for cancer therapy.


Author(s):  
Piera Tocci ◽  
Giovanni Blandino ◽  
Anna Bagnato

AbstractThe rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Zhihuang Zheng ◽  
Chuanlei Li ◽  
Guangze Shao ◽  
Jinqing Li ◽  
Kexin Xu ◽  
...  

AbstractAcute kidney injury (AKI) is associated with significant morbidity and its chronic inflammation contributes to subsequent chronic kidney disease (CKD) development. Yes-associated protein (YAP), the major transcriptional coactivator of the Hippo pathway, has been shown associated with chronic inflammation, but its role and mechanism in AKI-CKD transition remain unclear. Here we aimed to investigate the role of YAP in AKI-induced chronic inflammation. Renal ischemia/reperfusion (I/R) was used to induce a mouse model of AKI-CKD transition. We used verteporfin (VP), a pharmacological inhibitor of YAP, to treat post-IRI mice for a period, and evaluated the influence of YAP inhibition on long-term outcomes of AKI. In our results, severe IRI led to maladaptive tubular repair, macrophages infiltration, and progressive fibrosis. Following AKI, the Hippo pathway was found significantly altered with YAP persistent activation. Besides, tubular YAP activation was associated with the maladaptive repair, also correlated with interstitial macrophage infiltration. Monocyte chemoattractant protein 1 (MCP-1) was found notably upregulated with YAP activation. Of note, pharmacological inhibition of YAP in vivo attenuated renal inflammation, including macrophage infiltration and MCP-1 overexpression. Consistently, in vitro oxygen-glucose deprivation and reoxygenation (OGD/R) induced YAP activation and MCP-1 overproduction whereas these could be inhibited by VP. In addition, we modulated YAP activity by RNA interference, which further confirmed YAP activation enhances MCP-1 expression. Together, we concluded tubular YAP activation with maladaptive repair exacerbates renal inflammation probably via promoting MCP-1 production, which contributes to AKI-CKD transition.


2020 ◽  
Vol 295 (14) ◽  
pp. 4604-4616 ◽  
Author(s):  
Ariel Shepley-McTaggart ◽  
Hao Fan ◽  
Marius Sudol ◽  
Ronald N. Harty

The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain–containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Yanfei Yang ◽  
Noritsugu Nakano ◽  
Junichi Sadoshima

Mst1 and Lats2, components of the mammalian Hippo pathway, stimulate apoptosis and inhibit hypertrophy of cardiomyocytes (CMs), thereby mediating reperfusion injury and heart failure. YAP, a transcription factor co-factor, is negatively regulated by the Hippo pathway, and controls cell survival, proliferation and tissue regeneration. The role of YAP in regulating growth and death of CMs is poorly understood. YAP overexpression in CMs induced cardiac hypertrophy, as indicated by increases in cell size (+1.2 fold, p<0.01), protein content (+1.1 fold, p<0.01) and ANF (luciferase reporter activity +1.7 fold, mRNA +2.2 fold, and staining +2.7 fold, p<0.01). Lats2 phosphorylates YAP at Serine 127, which induces cytoplasmic translocation of YAP, whereas YAP(S127A) is localized constitutively in the nucleus. Expression of YAP(S127A) enhanced hypertrophy in cultured CMs compared to that of wild type YAP (+1.87 fold ANF staining, p<0.05), suggesting that the Mst1/Hippo pathway negatively regulates cardiac hypertrophy through YAP. YAP inhibited cell death induced by H2O2 treatment, as evaluated with TUNEL staining (-65%, p<0.05) and CellTiter Blue assays (+34.9%, p<0.01), indicating that YAP plays an essential role in mediating CM survival. Interestingly, YAP also significantly increased Ki67 positive cells in cultured CMs compared to LacZ (+2.65 fold, p<0.05). We used a mouse model of chronic myocardial infarction (MI) to evaluate the function of YAP in the heart in vivo. Although YAP is diffusely localized both in the nucleus and cytosol in CMs in control hearts, CMs in the border zone of MI exhibited nuclear localization of YAP whereas YAP was excluded from the nucleus in CMs in the remodeling area four days after MI (+6.52 fold and +1.28 fold). Some of the YAP positive CMs in the border zone exhibited positive co-staining with Ki67, suggesting that YAP potentially induces CM proliferation. A significant increase in nuclear YAP and Ki67 positive CMs (+2.95 fold, p<0.01 and +2.18 fold, p<0.05) was also observed in neonatal rat hearts whose apex was surgically resected three days before euthanasia. These results suggest that YAP plays an important role in mediating not only hypertrophy and survival, but also proliferation of CMs in response to myocardial injury.


2020 ◽  
Vol 31 (5) ◽  
pp. 946-961 ◽  
Author(s):  
Chunhua Xu ◽  
Li Wang ◽  
Yu Zhang ◽  
Wenling Li ◽  
Jinhong Li ◽  
...  

BackgroundThe serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway’s main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied.MethodsWe used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency.ResultsMST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2.ConclusionsOur findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities.


2020 ◽  
Vol 6 (23) ◽  
pp. eaax8214 ◽  
Author(s):  
Bo Qin ◽  
Jia Yu ◽  
Somaira Nowsheen ◽  
Fei Zhao ◽  
Liewei Wang ◽  
...  

The ATM (ataxia-telangiectasia mutated) kinase is rapidly activated following DNA damage and phosphorylates its downstream targets to launch DDR signaling. Recently, we and others showed that UFM1 signaling promotes ATM activation. We further discovered that monoufmylation of histone H4 at Lys31 by UFM1-specific ligase 1 (UFL1) is an important step in the amplification of ATM activation. However, how monoufmylated H4 enhances ATM activation is still unknown. Here, we report STK38, a kinase in the Hippo pathway, serves as a reader for histone H4 ufmylation to promote ATM activation in a kinase-independent manner. STK38 contains a potential UFM1 binding motif which recognizes ufmylated H4 and recruits the SUV39H1 to the double-strand breaks, resulting in H3K9 trimethylation and Tip60 activation to promote ATM activation. Together, STK38 is a previously unknown player in DNA damage signaling and functions as a reader of monoufmylated H4 at Lys31 to promote ATM activation.


2015 ◽  
Vol 112 (6) ◽  
pp. 1785-1790 ◽  
Author(s):  
Chih-Chao Yang ◽  
Hillary K. Graves ◽  
Ivan M. Moya ◽  
Chunyao Tao ◽  
Fisun Hamaratoglu ◽  
...  

Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical–basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non–cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non–cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.


Sign in / Sign up

Export Citation Format

Share Document