scholarly journals Glycolysis and respiration in yeasts. The Pasteur effect studied by mass spectrometry

1983 ◽  
Vol 212 (3) ◽  
pp. 749-754 ◽  
Author(s):  
D Lloyd ◽  
B Kristensen ◽  
H Degn

Simultaneous and continuous measurements of changes in CO2 and O2 concentrations in glucose-metabolizing yeast suspensions by mass spectrometry enabled a study of the Pasteur effect (aerobic inhibition of glycolysis) in Saccharomyces uvarum and Schizosaccharomyces pombe. A different control mechanism operates in Candida utilis to give a damped oscillation after the anaerobic-aerobic transition. The apparent Km values for respiration of the three yeasts were in the range 1.3-1.8 microM-O2. The apparent Km values for O2 of the Pasteur effect were 5 and 13 microM for catabolite-repressed and derepressed S. uvarum respectively and 7 microM for Sch. pombe. These results are discussed with respect to currently accepted mechanisms for the control of glycolysis.

Radiocarbon ◽  
2019 ◽  
Vol 62 (4) ◽  
pp. 891-899 ◽  
Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Ulf Büntgen ◽  
Michael Friedrich ◽  
Ronny Friedrich ◽  
...  

ABSTRACTAdvances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zürich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval.


2000 ◽  
Vol 54 (6) ◽  
pp. 792-798 ◽  
Author(s):  
M. Saayman ◽  
H. J. J. van Vuuren ◽  
W. H. van Zyl ◽  
M. Viljoen-Bloom

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1014
Author(s):  
Andrea Sevcovicova ◽  
Jana Plava ◽  
Matej Gazdarica ◽  
Eva Szabova ◽  
Barbora Huraiova ◽  
...  

The evolutionarily conserved Swi5-Sfr1 complex plays an important role in homologous recombination, a process crucial for the maintenance of genomic integrity. Here, we purified Schizosaccharomyces pombe Swi5-Sfr1 complex from meiotic cells and analyzed it by mass spectrometry. Our analysis revealed new phosphorylation sites on Swi5 and Sfr1. We found that mutations that prevent phosphorylation of Swi5 and Sfr1 do not impair their function but swi5 and sfr1 mutants encoding phosphomimetic aspartate at the identified phosphorylation sites are only partially functional. We concluded that during meiosis, Swi5 associates with Sfr1 and both Swi5 and Sfr1 proteins are phosphorylated. However, the functional relevance of Swi5 and Sfr1 phosphorylation remains to be determined.


Methods ◽  
2009 ◽  
Vol 48 (3) ◽  
pp. 311-319 ◽  
Author(s):  
Laurence M. Brill ◽  
Khatereh Motamedchaboki ◽  
Shuangding Wu ◽  
Dieter A. Wolf

1986 ◽  
Vol 6 (7) ◽  
pp. 597-602 ◽  
Author(s):  
William Mann ◽  
Jonathan Jeffery

Efficient preparation of spheroplasts from Candida utilis, Saccharomyces cerevisiae, and Schizosaccharomyces pombe, using a purified mixture of enzymes from Trichoderma harzianum, is described. Limitations of other methods, and differences between yeasts are demonstrated.


Author(s):  
E. Keyhani

The matrix of biological membranes consists of a lipid bilayer into which proteins or protein aggregates are intercalated. Freeze-fracture techni- ques permit these proteins, perhaps in association with lipids, to be visualized in the hydrophobic regions of the membrane. Thus, numerous intramembrane particles (IMP) have been found on the fracture faces of membranes from a wide variety of cells (1-3). A recognized property of IMP is their tendency to form aggregates in response to changes in experi- mental conditions (4,5), perhaps as a result of translational diffusion through the viscous plane of the membrane. The purpose of this communica- tion is to describe the distribution and size of IMP in the plasma membrane of yeast (Candida utilis).Yeast cells (ATCC 8205) were grown in synthetic medium (6), and then harvested after 16 hours of culture, and washed twice in distilled water. Cell pellets were suspended in growth medium supplemented with 30% glycerol and incubated for 30 minutes at 0°C, centrifuged, and prepared for freeze-fracture, as described earlier (2,3).


Sign in / Sign up

Export Citation Format

Share Document