scholarly journals Adipose-tissue-specific increase in glyceraldehyde-3-phosphate dehydrogenase activity and mRNA amounts in suckling pre-obese Zucker rats. Effect of weaning

1988 ◽  
Vol 254 (2) ◽  
pp. 483-487 ◽  
Author(s):  
I Dugail ◽  
A Quignard-Boulange ◽  
R Bazin ◽  
X Le Liepvre ◽  
M Lavau

The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied during the onset of obesity in the genetically obese (fa/fa) rat by determination of GAPDH activity and hybridizable mRNA amounts in adipose tissue and liver from suckling and weanling rats. GADPH activity remained low throughout the suckling period, and a burst of activity occurred after weaning in both lean and obese pups. As early as 7 days of age, adipose tissue from pre-obese rats displayed a significant increase in enzyme activity, whereas no difference could be detected in the liver. In both suckling (16 days of age) and weanling (30 days of age) obese rats a proportionate increase in GAPDH activity and mRNA amounts was observed in adipose tissue, but not in liver. It is concluded that the obese genotype influences GAPDH gene expression at a pretranslational level and in a tissue-specific manner. This phenomenon could partly contribute to the hyperactive fat accretion in the obese rat, since glycolysis is the major metabolic pathway for lipogenic substrates in adipose tissue.

2002 ◽  
Vol 282 (1) ◽  
pp. E59-E66 ◽  
Author(s):  
Isabelle Hainault ◽  
Guillaume Nebout ◽  
Sophie Turban ◽  
Bernadette Ardouin ◽  
Pascal Ferré ◽  
...  

We investigated angiotensinogen (AGT) expression in adipose tissue and liver of Zucker rats during the onset of obesity. The developmental pattern of AGT expression (protein and mRNA) in liver was similar in both genotypes. In inguinal adipose tissue, AGT cell content was similar in suckling and weaned pups in lean rats, whereas it continuously increased with age in obese rats. AGT amount in adipocytes was unaffected by the genotype until weaning. Thereafter, adipocytes from obese rats displayed a significant increase in AGT content that was strengthened with age. Compared with the cell content, the amount of secreted AGT over 24 h was higher, and a genotype effect was observed as early as 14 days of age. Using fat cell populations differing by size, we showed that this AGT oversecretion was not solely related to adipocyte hypertrophy. Our results demonstrate that the fa genotype exerts a control on the production of AGT in a tissue-specific manner, suggesting a local role of AGT in the overdevelopment of adipose tissue.


1992 ◽  
Vol 262 (1) ◽  
pp. R33-R38 ◽  
Author(s):  
J. R. Vasselli ◽  
J. A. Fiene ◽  
C. A. Maggio

In growing male obese Zucker rats, hyperphagia reaches a maximum or “breakpoint” and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.


1991 ◽  
Vol 261 (2) ◽  
pp. E246-E251 ◽  
Author(s):  
D. H. Bessesen ◽  
A. D. Robertson ◽  
R. H. Eckel

Lipoprotein lipase (LPL) activity and mRNA levels were measured in cardiac muscle and adipose tissue from lean, obese, and weight-stable reduced-obese Zucker rats, both fasted and 2 h after feeding. Fasting epididymal fat LPL activity was substantially higher in obese rats relative to lean rats [6.9 vs. 0.2 nmol free fatty acid (FFA).10(6) cells-1.min-1; P = 0.0001], and was higher still in reduced-obese rats (15.7 nmol FFA.10(6) cells-1.min-1; P = 0.002). Adipose tissue LPL increased with feeding in all three groups. In marked contrast, fasting cardiac muscle LPL was lower in obese rats relative to lean (28.8 vs. 38.5 nmol FFA.g-1.min-1; P = 0.0064) and was lower still in reduced-obese rats (14.5 nmol FFA.g-1.min-1; P = 0.0001). LPL mRNA levels increased in adipose tissue along with enzyme activity; however, the magnitude of the changes were relatively small, suggesting that the primary regulatory steps are posttranslational. Weight reduction studies were also carried out in Sprague-Dawley rats with similar results. These studies show that sustained weight reduction results in coordinate changes in tissue-specific LPL, favoring delivery of lipoprotein triglyceride fatty acids to adipose tissue relative to cardiac muscle and the restoration of energy stores.


1989 ◽  
Vol 257 (3) ◽  
pp. 917-919 ◽  
Author(s):  
I Dugail ◽  
X Le Liepvre ◽  
A Quignard-Boulangé ◽  
J Pairault ◽  
M Lavau

Adipsin gene expression as assessed by mRNA amounts was examined in adipose tissue of genetically obese rats at the onset (16 days of age) or at later stages (30 and 60 days of age) of obesity. Amounts of mRNA were equivalent in obese and lean rats at 16 days of age. In adult rats, we observed a 2-fold decrease in adipsin mRNA in the obese rats compared with control lean rats, which was abolished by weaning the animals on a high-fat diet. Our data show that, in sharp contrast with genetically obese mice, adipsin mRNA is not suppressed in genetically obese Zucker rats.


2006 ◽  
Vol 290 (3) ◽  
pp. E591-E597 ◽  
Author(s):  
Nadine Simler ◽  
Alexandra Grosfeld ◽  
André Peinnequin ◽  
Michèle Guerre-Millo ◽  
André-Xavier Bigard

Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Leprfa/Leprfa) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (LeprFA/LeprFA) and obese (Leprfa/Leprfa) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.


2000 ◽  
Vol 167 (3) ◽  
pp. 533-539 ◽  
Author(s):  
DE Livingstone ◽  
CJ Kenyon ◽  
BR Walker

Obesity has been associated with alterations in glucocorticoid metabolism in both man and rodents, but the underlying mechanisms remain undefined. We have previously reported tissue-specific alterations in 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) in obese Zucker rats predicting that reactivation of corticosterone is decreased in liver but increased in omental fat. The mechanisms of dysregulation of 11 beta-HSD1 in obesity are not known, and in this study we have investigated the potential role of glucocorticoids and insulin. In one experiment lean and obese Zucker rats were adrenalectomised, and in a second experiment they were sensitised to insulin by treatment with either metformin or rosiglitazone. Adrenalectomy (ADX) of obese animals attenuated weight gain, normalised hepatic 11 beta-HSD1 kinetics by an effect on V(max) (V(max)in sham-operated animals, 6.6+/-1.1 nmol/min per mg in lean vs 3.4+/-0.6 in obese, P<0.01; in ADX animals 5.9+/-1.1 in lean vs 6.9+/-1.8 in obese, NS), and reversed the difference in omental fat 11 beta-HSD1 activity (18.9+/-4.2% in lean ADX vs 8.2+/-2.3 in obese ADX, P=0.03). Both metformin and rosiglitazone improved insulin sensitivity in obese, but not lean animals, and had no effect on 11 beta-HSD1 activity in either liver or fat. However, both treatments normalised adrenal hypertrophy in obese animals (48+/-29 mg in obese vehicle vs 37+/-1.2 in metformin and 38+/-1.8 in rosiglitazone treated, both P<0.01), and rosiglitazone tended to attenuate hypercorticosteronaemia in obese rats. Neither treatment attenuated weight gain; in fact, weight gain was enhanced by rosiglitazone in obese rats. In summary, altered 11 beta-HSD1 activity in obese Zucker rats is reversible following adrenalectomy, but the mechanism is unclear since adrenalectomy also normalises many other metabolic abnormalities. The current study suggests that hyperinsulinaemia is not responsible for tissue-specific dysregulation of 11 beta-HSD1. However, insulin sensitisation did reverse adrenal hypertrophy, suggesting that hyperinsulinaemia may be a key factor contributing to activation of the hypothalamic- pituitary-adrenal (HPA) axis in obesity independently of tissue-specific changes in 11 beta-HSD1.


1991 ◽  
Vol 279 (1) ◽  
pp. 303-308 ◽  
Author(s):  
L Pénicaud ◽  
P Ferré ◽  
F Assimacopoulos-Jeannet ◽  
D Perdereau ◽  
A Leturque ◽  
...  

Previous experiments have shown that insulin-induced glucose utilization is increased in white adipose tissue of young obese Zucker rats. We have investigated the possible role of over-expression of the muscle/fat glucose transporter (Glut 4) and key lipogenic enzymes in this increased insulin-responsiveness. The amount or activity and the mRNA concentrations of Glut 4, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured before and after weaning in white adipose tissue of obese and lean Zucker rats. Comparison of the levels of Glut 4 and lipogenic-enzyme expression in 15-day-old suckling and 30-day-old weaned rats on a high-carbohydrate diet shows a marked increase in the latter group. The increase was, in lean and obese rats respectively, 6- and 7-fold for the amount of Glut 4 and 2- and 3-fold for its mRNA concentrations, 40- and 100-fold for the activity of lipogenic enzymes (FAS and ACC) and 30- and 10-fold for their mRNA concentrations. Furthermore, all these parameters, except the amount of Glut 4, were 2-5-fold higher in obese rats, both before and after weaning. Changes at weaning were largely blunted when rats were weaned on to a high-fat diet, although the differences between lean and obese rats persisted, and even became significant for the amount of Glut 4. Whatever the experimental conditions, plasma insulin levels were significantly higher in obese than in lean rats. These results indicate the existence of an enhanced expression of Glut 4, FAS and ACC in white adipose tissue of young obese fa/fa rats which could be related to the increased plasma insulin levels.


1998 ◽  
Vol 275 (6) ◽  
pp. R1898-R1908 ◽  
Author(s):  
Brenda G. Marques ◽  
Dorothy B. Hausman ◽  
Roy J. Martin

Inguinal, epididymal, and retroperitoneal adipose tissue from lean and obese Zucker rats, 3–15 wk of age, was used to determine the association among adipocyte size distribution, the presence of paracrine growth factors in adipose tissue, and subsequent changes in adipocyte number. For each specific depot and time point, obese rats had a greater percentage of large adipocytes than did lean rats. A positive correlation ( P < 0.02) was found in obese rats between the percentage of inguinal and epididymal adipocytes in the 140- to 180-μm size range and the ability of conditioned medium prepared from these depots to stimulate cellular proliferation in a bioassay system utilizing preadipocytes from inguinal fat pads of normal rats. Proliferative activity of the conditioned medium from all depots in obese rats was positively correlated ( P < 0.01) to subsequent changes in fat cell number. The data presented here for the inguinal and epididymal depot of obese Zucker rats are consistent with the hypothesis that enlarged adipocytes secrete growth factors that induce preadipocyte proliferation.


1992 ◽  
Vol 284 (3) ◽  
pp. 813-817
Author(s):  
C Laurent-Winter ◽  
I Dugail ◽  
A Quignard-Boulange ◽  
X Le Liepvre ◽  
M Lavau

Using two-dimensional electrophoresis on total extracts of adipose tissue from young lean (Fa/fa) and obese (fa/fa) Zucker rats, we have investigated the existence of early events at the protein level, before obvious obesity. Our results indicate that the two genotypes do not differ at 3 days of age in terms of polypeptide pattern. By 7 days of age, two polypeptides are transiently repressed in the fatty genotype, leading us to suggest their potential involvement in the onset of obesity. However, most of the differences between the lean and obese rats are detected at 30 days of age, characterized by an increase in the accumulation of several peptides in the adipose tissue of obese rats, in good agreement with the multiple biochemical changes previously identified at this stage of the disease. These results present evidence of new peptides that may be of interest in the study of the obesity syndrome.


Sign in / Sign up

Export Citation Format

Share Document