scholarly journals Investigation of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthase, and uptake of pimelate

1992 ◽  
Vol 287 (3) ◽  
pp. 685-690 ◽  
Author(s):  
O Ploux ◽  
P Soularue ◽  
A Marquet ◽  
R Gloeckler ◽  
Y Lemoine

The pimeloyl-CoA synthase from Bacillus sphaericus has been purified to homogeneity from an overproducing strain of Escherichia coli. The purification yielded milligram quantities of the synthase with a specific activity of 1 unit/mg of protein. Analysis of the products showed that this enzyme catalysed the transformation of pimelate into pimeloyl-CoA with concomitant hydrolysis of ATP to AMP. Using a continuous spectrophotometric assay, we have examined the catalytic properties of the pure enzyme. The pH profile under Vmax. conditions showed a maximum around 8.5. Apparent Km values for pimelate, CoASH, ATP. Mg2- and Mg2+ were respectively 145 microM, 33 microM, 170 microM and 2.3 mM. The enzyme was inhibited by Mg2+ above 10 mM. This acid-CoA ligase exhibited a very sharp substrate specificity, e.g. neither GTP nor pimelate analogues (di- or mono-carboxylic acids) were processed. The bivalent metal ion requirement was also investigated: Mn2+ (73%) and Co2+ (32%) but not Ca2+ could replace Mg2+. The enzyme was inhibited by metal chelators such as 1,10-phenanthroline and EDTA. The synthase was a homodimer with a 28,000-M(r) subunit. N-Terminal sequencing definitely proved that this enzyme was encoded by the bioW gene. A careful study of pimelate uptake by B. sphaericus, E. coli and Pseudomonas dentrificans showed that this metabolite crossed the membrane of these microorganisms by passive diffusion, ruling out the involvement of the bioX gene product as pimelate carrier.

2005 ◽  
Vol 187 (6) ◽  
pp. 2077-2083 ◽  
Author(s):  
Sherry V. Story ◽  
Claudia Shah ◽  
Francis E. Jenney ◽  
Michael W. W. Adams

ABSTRACT Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of l-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 ± 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100°C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100°C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.


1998 ◽  
Vol 64 (1) ◽  
pp. 216-220 ◽  
Author(s):  
Badal C. Saha ◽  
Rodney J. Bothast

ABSTRACT A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced α-l-arabinofuranosidase (α-l-AFase) when grown in liquid culture on oat spelt xylan. An extracellular α-l-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75°C, displayed optimal activity at 75°C and pH 4.0 to 4.5, and had a specific activity of 21.48 μmol · min−1· mg−1 of protein againstp-nitrophenyl-α-l-arabinofuranoside (pNPαAF). The purified α-l-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. TheKm values of the enzyme for the hydrolysis of pNPαAF, arabinan, and debranched arabinan at 75°C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The α-l-AFase activity was not inhibited at all byl-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected byp-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).


2021 ◽  
Vol 12 ◽  
Author(s):  
Anke Chen ◽  
Dan Wang ◽  
Rui Ji ◽  
Jixi Li ◽  
Shaohua Gu ◽  
...  

Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.


1988 ◽  
Vol 250 (2) ◽  
pp. 453-458 ◽  
Author(s):  
H Sobek ◽  
H Görisch

A heat-stable esterase has been purified 1080-fold to electrophoretic homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium; 20% of the starting activity is recovered. The purified enzyme shows a specific activity of 158 units/mg, based on the hydrolysis of p-nitrophenyl acetate. The esterase hydrolyses short-chain p-nitrophenyl esters, aliphatic esters and triacylglycerols. It is strongly inhibited by paraoxon and phenylmethanesulphonyl fluoride, but only weakly by eserine. From sedimentation-equilibrium data and molecular sieving in polyacrylamide gels, the Mr of the esterase is estimated to be 117000-128000. SDS/polyacrylamide-gel electrophoresis reveals a single band of protein, of Mr 32000. The purified esterase crystallizes in the presence of poly(ethylene glycol) in short rods. The enzyme is inactivated only on prolonged storage at temperature above 90 degrees C.


1990 ◽  
Vol 269 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Y Homma ◽  
Y Emori ◽  
F Shibasaki ◽  
K Suzuki ◽  
T Takenawa

A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).


2002 ◽  
Vol 68 (6) ◽  
pp. 2869-2876 ◽  
Author(s):  
Krishnan Chandra Raj ◽  
Lee A. Talarico ◽  
Lonnie O. Ingram ◽  
Julie A. Maupin-Furlow

ABSTRACT Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein−1) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.


2008 ◽  
Vol 190 (7) ◽  
pp. 2615-2618 ◽  
Author(s):  
Zahra Mashhadi ◽  
Hong Zhang ◽  
Huimin Xu ◽  
Robert H. White

ABSTRACT The riboflavin kinase in Methanocaldococcus jannaschii has been identified as the product of the MJ0056 gene. Recombinant expression of the MJ0056 gene in Escherichia coli led to a large increase in the amount of flavin mononucleotide (FMN) in the E. coli cell extract. The unexpected features of the purified recombinant enzyme were its use of CTP as the phosphoryl donor and the absence of a requirement for added metal ion to catalyze the formation of FMN. Identification of this riboflavin kinase fills another gap in the archaeal flavin biosynthetic pathway. Some divalent metals were found to be potent inhibitors of the reaction. The enzyme represents a unique CTP-dependent family of kinases.


2002 ◽  
Vol 184 (7) ◽  
pp. 1932-1939 ◽  
Author(s):  
Karen C. Crasta ◽  
Kim-Lee Chua ◽  
Sumathi Subramaniam ◽  
Joachim Frey ◽  
Hilda Loh ◽  
...  

ABSTRACT Riemerella anatipestifer is responsible for exudative septicemia in ducks. The genetic determinant of the CAMP cohemolysin, cam, from a strain of R. anatipestifer was cloned and expressed in Escherichia coli. Chromosomal DNA from serotype 19 strain 30/90 was used to construct a gene library in pBluescript II SK(−) vector in E. coli XL-1-Blue strain. The clones containing recombinant plasmids were screened for the CAMP reaction with Staphylococcus aureus. Those that showed cohemolysis were chosen for further analysis by sequencing. One of these clones, JFRA8, was subcloned to identify the smallest possible DNA fragment containing the CAMP cohemolysin determinant, which was located on a 3,566-bp BamHI-BstXI fragment which specified a 1,026-bp open reading frame. Clones containing recombinant plasmids carrying cam obtained by PCR cloning into E. coli M15 strain secreted an active CAMP cohemolysin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analyses confirmed that the recombinant strain expressed a protein with a molecular mass of 37 kDa and that strains from serotypes 1, 2, 3, 5, 6, and 19 expressed the cohemolysin. The deduced amino acid sequence showed high homology to those of O-sialoglycoprotein endopeptidases. Hydrolysis of radioiodinated glycophorin A confirmed that Cam is a sialoglycoprotease.


2001 ◽  
Vol 67 (10) ◽  
pp. 4504-4511 ◽  
Author(s):  
Sébastien Zappa ◽  
Jean-Luc Rolland ◽  
Didier Flament ◽  
Yannick Gueguen ◽  
Joseph Boudrant ◽  
...  

ABSTRACT This work reports the first isolation and characterization of an alkaline phosphatase (AP) from a hyperthermophilic archaeon. An AP gene from Pyrococcus abyssi, a euryarchaeon isolated from a deep-sea hydrothermal vent, was cloned and the enzyme expressed in Escherichia coli. Analysis of the sequence showed conservation of the active site and structural elements of theE. coli AP. The recombinant AP was purified and characterized. Monomeric and homodimeric active forms were detected, with a monomer molecular mass of 54 kDa. Apparent optimum pH and temperature were estimated at 11.0 and 70°C, respectively. Thus far,P. abyssi AP has been demonstrated to be the most thermostable AP, with half-lives at 100 and 105°C of 18 and 5 h, respectively. Enzyme activity was found to be dependent on divalent cations: metal ion chelators inhibited activity, whereas the addition of exogenous Mg(II), Zn(II), and Co(II) increased activity. The enzyme was inhibited by inorganic phosphate, but not by molybdate and vanadate. Strong inhibitory effects were observed in the presence of thiol-reducing agents, although cysteine residues of the P. abyssi AP were not found to be incorporated within intra- or interchain disulfide bonds. In addition,P. abyssi AP was demonstrated to dephosphorylate linear DNA fragments with dephosphorylation efficiencies of 93.8 and 84.1% with regard to cohesive and blunt ends, respectively.


1992 ◽  
Vol 283 (2) ◽  
pp. 327-331 ◽  
Author(s):  
O Ploux ◽  
A Marquet

The 8-amino-7-oxopelargonate synthase [6-carboxyhexanoyl-CoA:L-alanine carboxyhexanoyltransferase (decarboxylating); EC 2.3.1.47] from Bacillus sphaericus involved in biotin biosynthesis was purified from an Escherichia coli overproducing strain. The purification afforded an electrophoretically homogeneous enzyme with a specific activity of 0.67 unit/mg. The purified enzyme is a monomer of 41 kDa. N-Terminal sequencing of the first 14 amino acid residues showed complete agreement with the predicted sequence from the bioF gene. The pure enzyme showed the characteristic absorption band (425 nm) of pyridoxal 5′-phosphate-dependent enzymes. Furthermore, the holoenzyme was resolved during an affinity step yielding the inactive apoenzyme, which recovered activity and the 425 nm-absorption band on dialysis against pyridoxal 5′-phosphate. Km values for L-alanine and pimeloyl-CoA were respectively 3 mM and 1 microM.


Sign in / Sign up

Export Citation Format

Share Document