scholarly journals Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor

1996 ◽  
Vol 316 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Md. Omedul ISLAM ◽  
Yutaka YOSHIDA ◽  
Takaki KOGA ◽  
Masayasu KOJIMA ◽  
Kenji KANGAWA ◽  
...  

myo-Inositol 1,4,5-trisphosphate (InsP3) receptor of porcine aorta was purified to near homogeneity and its biochemical properties were compared with those of cerebellar InsP3 receptor of the same animal species. The aortic InsP3 receptor consisted of equal amounts of two polypeptides with slightly differing molecular masses of around 240 kDa and was found to possess a single population of InsP3-binding site (Kd of 1.2 nM). The InsP3 receptor purified from porcine cerebellum was also comprised of two polypeptides. However, the molecular mass was slightly but definitely larger, being 250 kDa, and the amounts of the two polypeptides were not equal. The aortic InsP3 receptor cross-reacted with polyclonal antibody specific to type 1 InsP3 receptor as did the cerebellar InsP3 receptor. The aortic InsP3 receptor bound to calmodulin–Sepharose in a Ca2+-dependent manner, while the cerebellar InsP3 receptor did not. Reverse transcriptase-PCR analysis revealed two splicing variants of the type 1 InsP3 receptor in porcine aortic smooth muscle distinct from those of the type 1 InsP3 receptor of porcine cerebellum. The possible relevance of this difference to difference in calmodulin-binding property was discussed.

2009 ◽  
Vol 297 (2) ◽  
pp. L347-L361 ◽  
Author(s):  
Yan Bai ◽  
Martin Edelmann ◽  
Michael J. Sanderson

The relative contribution of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and ryanodine receptors (RyRs) to agonist-induced Ca2+ signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca2+ oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca2+ oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca2+ waves generated by the photolytic release of IP3. However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP3-induced Ca2+ oscillations or Ca2+ wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca2+ oscillations in a concentration-dependent manner. However, tetracaine did not affect IP3-induced Ca2+ release or wave propagation nor the Ca2+ content of SMC Ca2+ stores as evaluated by Ca2+-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca2+ oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca2+ oscillations of SMCs were also observed at 37°C. In Ca2+-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca2+ levels indicating that relaxation also resulted from a reduction in Ca2+ sensitivity. These results indicate that agonist-induced Ca2+ oscillations in mouse small airway SMCs are primary mediated via IP3Rs and that tetracaine induces relaxation by both decreasing Ca2+ sensitivity and inhibiting agonist-induced Ca2+ oscillations via an IP3-dependent mechanism.


2008 ◽  
Vol 295 (5) ◽  
pp. C1376-C1384 ◽  
Author(s):  
Guiling Zhao ◽  
Adebowale Adebiyi ◽  
Eva Blaskova ◽  
Qi Xi ◽  
Jonathan H. Jaggar

Inositol 1,4,5-trisphosphate receptors (IP3Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP3R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP3R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethoxydiphenyl borate and xestospongin C, membrane-permeant IP3R blockers, reduced Ca2+ wave activation and global intracellular Ca2+ ([Ca2+]i) elevation stimulated by UTP, a phospholipase C-coupled purinergic receptor agonist. Quantitative PCR, Western blotting, and immunofluorescence indicated that all three IP3R isoforms were expressed in acutely isolated cerebral artery smooth muscle cells, with IP3R1 being the most abundant isoform at 82% of total IP3R message. IP3R1 knockdown with short hairpin RNA (shRNA) did not alter baseline Ca2+ wave frequency and global [Ca2+]i but abolished UTP-induced Ca2+ wave activation and reduced the UTP-induced global [Ca2+]i elevation by ∼61%. Antibodies targeting IP3R1 and IP3R1 knockdown reduced UTP-induced nonselective cation current ( Icat) activation. IP3R1 knockdown also reduced UTP-induced vasoconstriction in pressurized arteries with both intact and depleted sarcoplasmic reticulum (SR) Ca2+ by ∼45%. These data indicate that IP3R1 is the predominant IP3R isoform expressed in rat cerebral artery smooth muscle cells. IP3R1 stimulation contributes to UTP-induced Icat activation, Ca2+ wave generation, global [Ca2+]i elevation, and vasoconstriction. In addition, IP3R1 activation constricts cerebral arteries in the absence of SR Ca2+ release by stimulating plasma membrane Icat.


2018 ◽  
Vol 45 (4) ◽  
pp. 1366-1376 ◽  
Author(s):  
Xian-Yun Qin ◽  
Yun-Long Zhang ◽  
Ya-Fei Chi ◽  
Bo Yan ◽  
Xiang-Jun Zeng ◽  
...  

Background/Aims: Naive CD4+ T cells differentiate into T helper cells (Th1 and Th2) that play an essential role in the cardiovascular diseases. However, the molecular mechanism by which angiotensin II (Ang II) promotes Th1 differentiation remains unclear. The aim of this study was to determine whether the Ang II-induced Th1 differentiation regulated by ubiquitin-proteasome system (UPS). Methods: Jurkat cells were treated with Ang II (100 nM) in the presence or absence of different inhibitors. The gene mRNA levels were detected by real-time quantitative PCR analysis. The protein levels were measured by ELISA assay or Western blot analysis, respectively. Results: Ang II treatment significantly induced a shift from Th0 to Th1 cell differentiation, which was markedly blocked by angiotensin II type 1 receptor (AT1R) inhibitor Losartan (LST). Moreover, Ang II significantly increased the activities and the expression of proteasome catalytic subunits (β1, β1i, β2i and β5i) in a dose- and time-dependent manner. However, Ang II-induced proteasome activities were remarkably abrogated by LST and PKA inhibitor H-89. Mechanistically, Ang II-induced Th1 differentiation was at least in part through proteasome-mediated degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB. Conclusions: This study for the first time demonstrates that Ang II activates AT1R-PKA-proteasome pathway, which promotes degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB thereby leading to Th1 differentiation. Thus, inhibition of proteasome activation might be a potential therapeutic target for Th1-mediated diseases.


2008 ◽  
Vol 411 (2) ◽  
pp. 415-423 ◽  
Author(s):  
Jaya P. Gangopadhyay ◽  
Noriaki Ikemoto

In the present study we show that the interaction of the CaM (calmodulin)-binding domain (Lys3614–Asn3643) with the Cys4114–Asn4142 region (a region included in the CaM-like domain) serves as an intrinsic regulator of the RyR1 (type-1 ryanodine receptor). We tested the effects of antibodies raised against the two putative key regions of RyR1 [anti-(Lys3614–Asn3643) and anti-(Cys4114–Asn4142) antibodies]. Both antibodies produced significant inhibition of [3H]ryanodine-binding activity of RyR1. This suggests that the inter-domain interaction between the two domains, Lys3614–Asn3643 and Cys4114–Asn4142, activates the channel, and that the binding of antibody to either side of the interacting domain pair interfered with the formation of a ‘channel-activation link’ between the two regions. In order to spectroscopically monitor the mode of interaction of these domains, the site of inter-domain interaction was fluorescently labelled with MCA [(7-methoxycoumarin-4-yl)acetyl] in a site-directed manner. The accessibility of the bound MCA to a large molecular mass fluorescence quencher, BSA-QSY (namely, the size of a gap between the interacting domains) decreased with an increase of [Ca2+] in a range of 0.03–2.0 μM, as determined by Stern–Volmer fluorescence quenching analysis. The Ca2+-dependent decrease in the quencher accessibility was more pronounced in the presence of 150 μM 4-CmC (4-chlorometacresol), and was reversed by 1 mM Mg2+ (a well-known inhibitor of Ca2+/agonist-induced channel activation). These results suggest that the Lys3614–Asn3643 and Cys4114–Asn4142 regions of RyR1 interact with each other in a Ca2+- and agonist-dependent manner, and this serves as a mechanism of Ca2+- and agonist-dependent activation of the RyR1 Ca2+ channel.


1983 ◽  
Vol 215 (3) ◽  
pp. 627-636 ◽  
Author(s):  
R J Birnbaum ◽  
J F Head

In this study we describe the identification of four soluble forms of cyclic nucleotide phosphodiesterase from chicken gizzard smooth muscle. These isoenzymes were separated from one another by ion-exchange chromatography on DEAE-cellulose and by calmodulin-Sepharose affinity chromatography. Each form migrates as a single discrete band when it is electrophoresed on non-denaturing polyacrylamide gels and stained for phosphodiesterase activity. Each form is also eluted as a single peak on gel-permeation chromatography, giving apparent Mr values of 114 000, 116 000, 122 000 and 59 000. All four enzymes have apparent Km values in the 0-20 microM range, although their relative specificities for cyclic AMP and cyclic GMP differ. Two of the forms bind to calmodulin in a Ca2+-dependent manner; however, only one is activated by calmodulin. The interaction of the second calmodulin-binding form with calmodulin is disrupted by the papaverine derivative verapamil without significantly altering the hydrolytic activity of the enzyme.


2001 ◽  
Vol 117 (5) ◽  
pp. 435-446 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Sean McBride ◽  
J. Kevin Foskett

The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is an endoplasmic reticulum–localized Ca2+-release channel that controls complex cytoplasmic Ca2+ signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 InsP3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of ∼3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 μM under saturating (10 μM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP3 concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of ∼4. InsP3 activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3–induced Ca2+ release and low gain Ca2+–induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.


2001 ◽  
Vol 45 (7) ◽  
pp. 2044-2053 ◽  
Author(s):  
Jeannette M. Loutsch ◽  
Bruno Sainz ◽  
Mary E. Marquart ◽  
Xiaodong Zheng ◽  
Prabakaran Kesavan ◽  
...  

ABSTRACT Famciclovir (FCV) is efficacious in the treatment of acute herpes zoster and recurrent genital infections but has not been used to treat ocular herpes simplex virus (HSV) infections. We evaluated the efficacy of orally administered FCV in treating HSV-1 epithelial keratitis and determined its effects on the establishment of latency and subsequent reactivation. Rabbits were inoculated with HSV-1 strain 17 syn+ and treated twice daily with increasing concentrations of FCV (60 to 500 mg/kg of body weight). This resulted in a significant, dose-dependent improvement in keratitis scores, as well as prolonged survival. Regardless of the dose of drug used, all groups exhibited the high rates of spontaneous and induced reactivation characteristic of 17syn+. The efficacy of 250 mg of FCV per kg was also compared to topical treatment with 1% trifluorothymidine (TFT). Although TFT treatment was more effective at reducing eye disease, FCV-treated rabbits had a better survival rate. Real-time quantitative PCR analysis of rabbit trigeminal ganglia (TG) demonstrated that FCV significantly reduced the HSV-1 copy number compared to that after treatment with TFT or the placebo but not in a dose-dependent manner. In summary, oral FCV treatment significantly reduces the severity of corneal lesions, reduces the number of HSV-1 genomes in the TG, improves survival, and therefore may be beneficial in reducing the morbidity of HSV keratitis in the clinic.


Sign in / Sign up

Export Citation Format

Share Document