scholarly journals Biosynthesis of ‘essential’ amino acids by scleractinian corals

1997 ◽  
Vol 322 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Lisa M. FITZGERALD ◽  
Alina M. SZMANT

Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called ‘essential amino acids’. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa.

1973 ◽  
Vol 53 (4) ◽  
pp. 717-724 ◽  
Author(s):  
H. A. SALEM ◽  
T. J. DEVLIN ◽  
J. R. INGALLS ◽  
G. D. PHILLIPS

The effects of a semipurified diet containing 0 (0% urea-N diet), 50 (39% urea-N diet), or 100% (76% urea-N diet) of added dietary nitrogen (N) as urea on the amino acid concentrations in ruminant tissues was investigated. Three rumen-fistulated bull calves averaging 240 kg were used in a latin square design. The calves were fed using a continuous feeder to provide 7 kg of feed daily. Each experimental period of the latin square was 40 days divided into four 10-day intervals. Liver samples were obtained on the 9th day of each 10-day interval and rumen epithelium and rumen microorganisms were obtained on the 10th day of each 10-day interval. Blood samples were collected on the 6th, 8th, and 10th day of each 10-day interval for the determination of plasma amino acid patterns as well as the amino acid concentrations in the tissues. Plasma amino acid patterns indicated that when the 76% urea-N diet was fed the levels of aspartic acid, citrulline, glutamic acid, glycine, and proline were increased. Most of the essential amino acids were decreased on the 76% urea-N diet as compared with the 0% urea-N diet. All amino acids of rumen microorganisms were increased on the 39% urea-N diet with the exception of arginine, lysine, and threonine, which decreased slightly or did not show any change. Most amino acids were lower on the 76% urea-N diet as compared with the 39% or 0% urea-N diets. All essential amino acids measured in the liver were reduced on the 76% urea-N diet. Cystine, glutamic acid, glycine, isoleucine, leucine, lysine, tryptophan, and valine were also reduced on the 39% urea-N diet. In rumen epithelium, there was a reduction of the essential amino acids and an increase of the nonessential amino acids on the 76% urea-N diet.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Yao ◽  
Yan Zeng ◽  
Miaoxiao Wang ◽  
Yue-Qin Tang

In natural communities, microbes exchange a variety of metabolites (public goods) with each other, which drives the evolution of auxotroph and shapes interdependent patterns at community-level. However, factors that determine the strategy of public goods synthesis for a given community member still remains to be elucidated. In anaerobic methanogenic communities, energy availability of different community members is largely varied. We hypothesized that this uneven energy availability contributed to the heterogeneity of public goods synthesis ability among the members in these communities. We tested this hypothesis by analyzing the synthetic strategy of amino acids of the bacterial and archaeal members involved in four previously enriched anaerobic methanogenic communities residing in thermophilic chemostats. Our analyses indicate that most of the members in the communities did not possess ability to synthesize all the essential amino acids, suggesting they exchanged these essential public goods to establish interdependent patterns for survival. Importantly, we found that the amino acid synthesis ability of a functional group was largely determined by how much energy it could obtain from its metabolism in the given environmental condition. Moreover, members within a functional group also possessed different amino acid synthesis abilities, which are related to their features of energy metabolism. Our study reveals that energy availability is a key driver of microbial evolution in presence of metabolic specialization at community level and suggests the feasibility of managing anaerobic methanogenic communities for better performance through controlling the metabolic interactions involved.


1974 ◽  
Vol 41 (1) ◽  
pp. 95-100 ◽  
Author(s):  
T. B. Mepham ◽  
J. L. Linzell

SummaryArterio-venous (AV) blood plasma concentration differences of amino acids across the mammary glands of 2 lactating goats were measured at intervals throughout a day. One gland of each animal had been transplanted to the neck for experimental purposes. The variation throughout the day in arterial concentration of all amino acids was similar. The variation in AV differences was slight for most essential amino acids, greater for glutamic acid and proline and very marked for aspartic acid, alanine, glycine and citrulline. There was no statistical difference between the AV difference of any amino acid measured simultaneously across the 2 glands of either goat. The arterial concentrations of certain pairs of amino acids were significantly correlated. The implications of the results for estimation of rates of amino-acid synthesis in the mammary gland using the intra-arterial infusion technique are discussed.


2021 ◽  
Vol 22 (10) ◽  
pp. 5166
Author(s):  
Qin Lu ◽  
Xiaoming Chen ◽  
Zixiang Yang ◽  
Nawaz Haider Bashir ◽  
Juan Liu ◽  
...  

Chinese galls are the result of hyperplasia in host plants induced by aphids. The metabolism and gene expression of these galls are modified to accommodate the aphids. Here, we highlight the molecular and histologic features of horned galls according to transcriptome and anatomical structures. In primary pathways, genes were found to be unevenly shifted and selectively expressed in the galls and leaves near the galls (LNG). Pathways for amino acid synthesis and degradation were also unevenly shifted, favoring enhanced accumulation of essential amino acids in galls for aphids. Although galls enhanced the biosynthesis of glucose, which is directly available to aphids, glucose content in the gall tissues was lower due to the feeding of aphids. Pathways of gall growth were up-regulated to provide enough space for aphids. In addition, the horned gall has specialized branched schizogenous ducts and expanded xylem in the stalk, which provide a broader feeding surface for aphids and improve the efficiency of transportation and nutrient exchange. Notably, the gene expression in the LNG showed a similar pattern to that of the galls, but on a smaller scale. We suppose the aphids manipulate galls to their advantage, and galls lessen competition by functioning as a medium between the aphids and their host plants.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1707
Author(s):  
Wayiza Masamba

α-Amino acids find widespread applications in various areas of life and physical sciences. Their syntheses are carried out by a multitude of protocols, of which Petasis and Strecker reactions have emerged as the most straightforward and most widely used. Both reactions are three-component reactions using the same starting materials, except the nucleophilic species. The differences and similarities between these two important reactions are highlighted in this review.


1967 ◽  
Vol 168 (1013) ◽  
pp. 421-438 ◽  

The uptake of thirteen essential amino acids by mouse LS cells in suspension culture was determined by bacteriological assay methods. Chemostat continuous-flow cultures were used to determine the effect of different cell growth rates on the quantitative amino acid requirements for growth. The growth yields of the cells ( Y = g cell dry weight produced/g amino acid utilized) were calculated for each of the essential amino acids. A mixture of the non-essential amino acids, serine, alanine and glycine increased the cell yield from the essential amino acids. The growth yields from nearly all the essential amino acids in batch culture were increased when glutamic acid was substituted for the glutamine in the medium. The growth yields from the amino acids in batch culture were much less at the beginning than at the end of the culture. The highest efficiencies of conversion of amino acids to cell material were obtained by chemostat culture. When glutamic acid largely replaced the glutamine in the medium the conversion of amino acid nitrogen to cell nitrogen was 100 % efficient (that is, the theoretical yield was obtained) at the optimum growth rate (cell doubling time, 43 h). The maximum population density a given amino acid mixture will support can be calculated from the data. It is concluded that in several routinely used tissue culture media the cell growth is limited by the amino acid supply. In batch culture glutamine was wasted by (1) its spontaneous decomposition to pyrrolidone carboxylic acid and ammonia, and (2) its enzymic breakdown to glutamic acid and ammonia, but also glutamine was used less efficiently than glutamic acid. Study of the influence of cell growth rate on amino acid uptake rates per unit mass of cells indicated that a marked change in amino acid metabolism occurred at a specific growth rate of 0.4 day -1 (cell doubling time, 43 h). With decrease in specific growth rate below 0.4 day -1 there was a marked stimulation of amino acid uptake rate per cell and essential amino acids were consumed increasingly for functions other than synthesis of cell material.


1960 ◽  
Vol 38 (11) ◽  
pp. 1229-1234 ◽  
Author(s):  
R. Kasting ◽  
A. J. McGinnis

The production of C14O2 by third-instar larvae of the blow fly, Phormia regina Meig., after it was injected with glutamic acid-U-C14, indicates that this substrate was metabolized under these conditions. However, the nutritionally essential amino acids lysine, phenylalanine, valine, isoleucine, leucine, and threonine, isolated from the injected larvae, contained little radioactivity. A low level of radioactivity in arginine, histidine, and methionine suggests that they were slowly synthesized. The nutritionally non-essential amino acids alanine, serine, aspartic acid, and proline contained large quantities of radioactivity; tyrosine and glycine were exceptions. These results, in agreement with earlier work that used glucose-U-C14, show that radioactivity data are useful for determining certain of the nutritionally essential amino acids.


2019 ◽  
Vol 122 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lisa Vettore ◽  
Rebecca L. Westbrook ◽  
Daniel A. Tennant

AbstractAn abundant supply of amino acids is important for cancers to sustain their proliferative drive. Alongside their direct role as substrates for protein synthesis, they can have roles in energy generation, driving the synthesis of nucleosides and maintenance of cellular redox homoeostasis. As cancer cells exist within a complex and often nutrient-poor microenvironment, they sometimes exist as part of a metabolic community, forming relationships that can be both symbiotic and parasitic. Indeed, this is particularly evident in cancers that are auxotrophic for particular amino acids. This review discusses the stromal/cancer cell relationship, by using examples to illustrate a number of different ways in which cancer cells can rely on and contribute to their microenvironment – both as a stable network and in response to therapy. In addition, it examines situations when amino acid synthesis is driven through metabolic coupling to other reactions, and synthesis is in excess of the cancer cell’s proliferative demand. Finally, it highlights the understudied area of non-proteinogenic amino acids in cancer metabolism and their potential role.


1980 ◽  
Vol 35 (11-12) ◽  
pp. 1094-1095
Author(s):  
Rüdiger Riehl

Abstract The oocytes of the marine goby Pomatoschistus minutus were analyzed for their amino acid content. Most of the amino acids exist as protein, only a little part is free or peptide-bound. Among the protein-bound amino acids, high levels of glutamic acid, proline, alanine, aspartic acid, valine and leucine were detected. These represent more than 60% of the protein amino acids. Among the free acids, glutamic acid, serine and alanine, are dominant. There are no certain proofs of the occurrence of peptide pools in the oocytes of Pomatoschistus minutus.


2007 ◽  
Vol 73 (16) ◽  
pp. 5370-5373 ◽  
Author(s):  
Shigenori Yamaguchi ◽  
Hidenobu Komeda ◽  
Yasuhisa Asano

ABSTRACT d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ε-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.


Sign in / Sign up

Export Citation Format

Share Document