scholarly journals Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/Ca2+ system in HL-60 leukaemia cells

1998 ◽  
Vol 336 (2) ◽  
pp. 491-500 ◽  
Author(s):  
Fumikazu OKAJIMA ◽  
Koichi SATO ◽  
Hideaki TOMURA ◽  
Atsushi KUWABARA ◽  
Hiromi NOCHI ◽  
...  

We examined the mechanism of action of lysophosphatidylcholine (LPC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflammatory disorders, in HL-60 leukaemia cells. Extracellular 1-palmitoyl LPC increased the intracellular Ca2+ concentration in association with production of inositol phosphate. These actions of LPC were markedly inhibited by treatment of the cells with pertussis toxin and U73122, a phospholipase C inhibitor. The lipid-induced stimulation of the phospholipase C/Ca2+ system was also attenuated in the dibutyryl cAMP-induced differentiated (neutrophil-like) cells, in which phospholipase C activation induced by NaF or formyl-Met-Leu-Phe was enhanced. In contrast with the stimulatory action of 1-palmitoyl LPC, 1-stearoyl LPC was inhibitory for the phospholipase C/Ca2+ system stimulated by NaF as well as by 1-palmitoyl LPC or other Ca2+-mobilizing agonists. In a cell-free system, only an inhibitory effect on phospholipase C activity was observed even by 1-palmitoyl LPC; 1-stearoyl LPC was more inhibitive than 1-palmitoyl LPC. Taken together, these results suggest that atherogenic and inflammatory LPC exerts both stimulatory and inhibitory actions on the phospholipase C/Ca2+ system depending on the species of fatty acid residue of the lipid; the stimulatory effect is possibly mediated through G-protein-coupled receptors; the inhibitory effect might be caused by dysfunction of the components involved in the enzyme system owing to the amphiphilic nature of the lipid. 1-Palmitoyl LPC prefers the former receptor stimulation at least in intact cells, but 1-stearoyl LPC preferentially exerts the latter inhibitory action.

1999 ◽  
Vol 345 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Laura E. BERTELLO ◽  
Maria Júlia M. ALVES ◽  
Walter COLLI ◽  
Rosa M. de LEDERKREMER

The lipid moiety in the glycosylphosphatidylinositol anchors of glycoproteins of Trypanosoma cruzi consists of an alkylacylglycerol, a lysoalkylglycerol or a ceramide. Previously, we showed that the inositolphosphoceramides (IPCs) are the major components in the precursor inositolphospholipids of epimastigote and trypomastigote forms. Using 3H-labelled subfractions of IPC, phosphatidylinositol (PI) and glycoinositolphospholipids (GIPLs) as substrates with a cell-free system, we now demonstrate the association of at least five enzyme activities with the trypanosomal membranous particulate material. These include: phospholipase A1 and phospholipase A2, enzymes that release free fatty acid from the PI and GIPLs; an acyltransferase responsible for the acylation of the generated monoacyl or monoalkylglycerolipids with endogenous unlabelled fatty acid; two activities of phospholipase C, one releasing ceramide from IPC and the other alkylacylglycerol, alkylglycerol or diacylglycerol from PI. The neutral lipids were also generated on incubation of the GIPLs. The phospholipase C activities were inhibited by p-chloromercuriphenylsulphonic acid, as reported for other PI phospholipases C. An IPC-fatty-acid hydrolase, releasing fatty acid from the labelled IPC, was also observed. The enzyme activities reported in the present study may be acting in remodelling reactions leading to the anchor of the mature glycoproteins of T. cruzi.


1995 ◽  
Vol 108 (6) ◽  
pp. 2525-2535 ◽  
Author(s):  
B. Spungin ◽  
I. Margalit ◽  
H. Breitbart

We used a cell-free system to study membrane fusion during sperm exocytosis (acrosome reaction). Extracted bovine sperm plasma and outer acrosomal membranes were labeled with chlorophyll a or DCY, respectively. The occurrence of membrane fusion is indicated by the ability of the probes to diffuse from one membrane species to another which is revealed by resonance energy transfer between the two probes. We have previously shown using this system that the requirement of capacitation for sperm exocytosis is retained in cell-free membrane fusion, and that the pH and calcium dependence of the cell-free fusion mimics those of exocytosis in intact cells. In the present report we further characterize the fusion of sperm membranes which we observe in our assay. Phosphoproteins and phospholipases were found to be involved in the membrane fusion step of sperm exocytosis. Protein kinases, phosphatases, and Gi-like proteins, while involved in exocytosis in intact cells, are not involved specifically in the membrane fusion step of exocytosis. The role of membrane bound F-actin in regulating membrane fusion was also studied using fluorescently labeled phalloidin. The results show that cortical F-actin has two roles in regulating sperm exocytosis. One is to form a scaffolding to hold phospholipase C at the membrane. It also functions as a physical barrier to membrane fusion which is removed by the increases in intracellular calcium and pH which precede fusion.


1998 ◽  
Vol 18 (10) ◽  
pp. 5670-5677 ◽  
Author(s):  
Ossama Abu Hatoum ◽  
Shlomit Gross-Mesilaty ◽  
Kristin Breitschopf ◽  
Aviad Hoffman ◽  
Hedva Gonen ◽  
...  

ABSTRACT MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.


1987 ◽  
Vol 104 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
K Matuoka ◽  
M Namba ◽  
Y Mitsui

To establish the relation of glycosaminoglycan synthesis to cell proliferation, we investigated the synthesis of individual glycosaminoglycan species by intact cells and in a cell-free system, using normal and transformed human fibroblasts under differing culture conditions. Reducing serum concentration brought about a marked decline in the synthesis of hyaluronate (HA) as well as cell proliferation on both normal and transformed cells. Both HA synthesis and proliferation decreased with increasing cell densities markedly (in inverse proportion to cell density) in normal cells but gradually in transformed cells. This noticeable congruity of the changes in HA synthesis and proliferation indicates that the change in HA synthesis is related primarily to cell proliferation rather than to cell density or cellular transformation. Examination of HA synthesis in a cell-free system demonstrated that the activity of HA synthetase also fluctuated in conjunction with cell proliferation. Furthermore, growth-reduced cells (except crowded transformed cells) inhibited cell-free HA synthesis and this inhibition was induced coincidentally with a decrease in both HA synthetase activity and proliferation. These findings suggest that the change in HA synthesis is significant in the regulation of cell proliferation.


1989 ◽  
Vol 256 (1) ◽  
pp. C28-C34 ◽  
Author(s):  
S. R. Kimball ◽  
W. V. Everson ◽  
K. E. Flaim ◽  
L. S. Jefferson

A cell-free system, which maintained a linear rate of protein synthesis for up to 20 min of incubation, was prepared from isolated rat hepatocytes. The rate of protein synthesis in the cell-free system was approximately 20% of the rate obtained in isolated hepatocytes or perfused liver. More than 70% of total protein synthesis in the cell-free system was due to reinitiation, as indicated by addition of inhibitors of initiation, i.e., edeine or polyvinyl sulfate. The rate of protein synthesis and formation of 43S initiation complexes in the cell-free system were reduced to 60 and 30% of the control values, respectively, after incubation of hepatocytes in medium deprived of an essential amino acid. Therefore, the cell-free system maintained the defect in initiation induced in the intact cells by amino acid deprivation. The defect in initiation was corrected by addition of either rat liver eukaryotic initiation factor 2 or the guanine nucleotide exchange factor (GEF) to the cell-free system. A role for GEF in the defect in initiation was further implicated by experiments that showed that the activity of the factor was decreased in extracts from livers perfused with medium deficient in amino acids. The cell-free system should provide a valuable tool for investigation of mechanisms involved in the regulation of initiation of protein synthesis.


1995 ◽  
Vol 312 (2) ◽  
pp. 457-464 ◽  
Author(s):  
T D Jørgensen ◽  
J Gromada ◽  
K Tritsaris ◽  
B Nauntofte ◽  
S Dissing

The effect of extracellular ATP on the intracellular free Ca2+ concentration ([Ca2+]i) and inositol phosphate production following stimulation with the muscarinic cholinergic agonist acetylcholine (ACh) was investigated in isolated rat parotid acinar cells. Stimulation of rat parotid acinar cells with ATP4- results in a rise in [Ca2+]i that is due to influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores. Stimulation with purinergic agonists revealed that both influx as well as Ca2+ release from intracellular stores was mediated through activation of P2z receptors. The Ca2+ mobilization from intracellular stores was due to production of Ins(1,4,5)P3 and was inhibited by U73122, an inhibitor of phospholipase C-coupled processes. Under Ca(2+)-free conditions ATP4- caused a dose-dependent inhibition (IC50 = 8 microM) of the ACh-evoked Ca2+ release. The inhibitory effect of ATP4- is due to activation of the P2z purinoceptors, which results in a strong reduction in the ACh-induced inositol phosphate production. Prestimulation with 100 microM ATP4- reduced the amount of Ins(1,4,5)P3 formed after maximal ACh stimulation by 91%. In conclusion, the inhibitory effect of ATP4- on the ACh-mediated response is due to interactions of the activated P2z receptor with the phospholipase C-coupled processes underlying the muscarinic cholinergic response.


1995 ◽  
Vol 305 (2) ◽  
pp. 557-561 ◽  
Author(s):  
N Ali ◽  
A Craxton ◽  
M Sumner ◽  
S B Shears

There is speculation that some of the toxic effects of Al3+ may originate from it perturbing inositol phosphate/Ca2+ signalling. For example, in permeabilized L1210 mouse lymphoma cells, 10-50 microM Al3+ activated Ins(1,3,4,5)P4-dependent Ca2+ mobilization and Ins(1,3,4,5)P4 3-phosphatase activity [Loomis-Husselbee, Cullen, Irvine and Dawson (1991) Biochem. J. 277, 883-885]. Ins(1,3,4,5)P4 3-phosphatase activity is performed by a multiple inositol polyphosphate phosphatase (MIPP) that also attacks Ins(1,3,4,5,6)P5 and InsP6 [Craxton, Ali and Shears (1995) Biochem. J. 305, 491-498]: 5-50 microM Al3+ increased MIPP activity towards both Ins(1,3,4,5)P4 (by 30%) and Ins(1,3,4,5,6)P5 (by up to 500%), without affecting metabolism of InsP6. Higher concentrations of Al3+ inhibited metabolism of all three substrates, and in the case of InsP6, Al3+ altered the pattern of accumulating products. When 1-50 microM Al3+ was present, InsP6 became a less effective inhibitor of Ins(1,3,4,5)P4 3-phosphatase activity; this effect did not depend on the presence of cellular membranes, contrary to a previous proposal. The latter phenomenon largely explains how, in a cell-free system where Ins(1,3,4,5)P4 3-phosphatase is inhibited by endogenous InsP6, the addition of Al3+ can apparently increase the enzyme activity. However, there was no effect of either 10 or 25 microM Al3+ (in either the presence or absence of apotransferrin) on inositol phosphate profiles in either Jurkat E6-1 lymphoma cells or AR4-2J pancreatoma cells.


2000 ◽  
Vol 279 (3) ◽  
pp. F400-F416 ◽  
Author(s):  
Nicole Defer ◽  
Martin Best-Belpomme ◽  
Jacques Hanoune

The present review focuses on the potential physiological regulations involving different isoforms of adenylyl cyclase (AC), the enzymatic activity responsible for the synthesis of cAMP from ATP. Depending on the properties and the relative level of the isoforms expressed in a tissue or a cell type at a specific time, extracellular signals received by the G protein-coupled receptors can be differently integrated. We report here on various aspects of such regulations, emphasizing the role of Ca2+/calmodulin in activating AC1 and AC8 in the central nervous system, the potential inhibitory effect of Ca2+ on AC5 and AC6, and the changes in the expression pattern of the isoforms during development. A particular emphasis is given to the role of cAMP during drug dependence. Present experimental limitations are also underlined (pitfalls in the interpretation of cellular transfection, scarcity of the invalidation models, and so on).


Sign in / Sign up

Export Citation Format

Share Document