Apolipoprotein A-I stimulates the transport of intracellular cholesterol to cell-surface cholesterol-rich domains (caveolae)

2001 ◽  
Vol 358 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Dmitri SVIRIDOV ◽  
Noel FIDGE ◽  
Gabrielle BEAUMIER-GALLON ◽  
Christopher FIELDING

We have studied the effect of lipid-free human plasma apolipoprotein A-I (apoA-I) on the transport of newly synthesized cholesterol to cell-surface cholesterol-rich domains, which in human skin fibroblasts are mainly represented by caveolae. Changes in transport of newly synthesized cholesterol were assessed after labelling cells with [14C]acetate at 15°C and warming cells to permit the transfer of cholesterol, followed by the selective oxidation of cholesterol in cholesterol-rich domains (caveolae) in the plasma membrane before their partial purification. ApoA-I, but not BSA added in an equimolar concentration, enhanced the transport of cholesterol to the caveolae up to 5-fold in a dose- and time-dependent manner. The effect of apoA-I on cholesterol transport exceeded its effect on cholesterol efflux, resulting in an accumulation of intracellular cholesterol in caveolae. Methyl-β-cyclodextrin, added at a concentration promoting cholesterol efflux to the same extent as apoA-I, also stimulated cholesterol trafficking, but was 3-fold less effective than apoA-I. Progesterone inhibited the transport of newly synthesized cholesterol to the caveolae. Treatment of cells with apoA-I stimulated the expression of caveolin, increasing the amount of caveolin protein and mRNA by approx. 2-fold. We conclude that apoA-I induces the transport of intracellular cholesterol to cell-surface caveolae, possibly in part through the stimulation of caveolin expression.

2019 ◽  
Author(s):  
Leslie A. McCauliff ◽  
Annette Langan ◽  
Ran Li ◽  
Olga Ilnytska ◽  
Debosreeta Bose ◽  
...  

AbstractUnesterified cholesterol accumulation in the late endosomal/lysosomal (LE/LY) compartment is the cellular hallmark of Niemann-Pick C (NPC) disease, caused by defects in the genes encoding NPC1 or NPC2. We previously reported the dramatic stimulation of NPC2 cholesterol transport rates by the LE/LY phospholipid lysobisphosphatidic acid (LBPA) and in these studies sought to determine their functional relationship in normal LE/LY cholesterol egress. Here we demonstrate that NPC2 interacts directly with LBPA and identify the NPC2 hydrophobic knob domain as the site of interaction. Using its precursor phosphatidylglycerol (PG), we show that PG-induced LBPA enrichment results in clearance of accumulated cholesterol from NPC1-deficient cells but is ineffective in cells lacking functional NPC2. Together these studies reveal a heretofore unknown aspect of intracellular cholesterol trafficking, in which NPC2 and LBPA function together in an obligate step of sterol egress from the LE/LY compartment, which appears to be independent of NPC1.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Leslie A McCauliff ◽  
Annette Langan ◽  
Ran Li ◽  
Olga Ilnytska ◽  
Debosreeta Bose ◽  
...  

Unesterified cholesterol accumulation in the late endosomal/lysosomal (LE/LY) compartment is the cellular hallmark of Niemann-Pick C (NPC) disease, caused by defects in the genes encoding NPC1 or NPC2. We previously reported the dramatic stimulation of NPC2 cholesterol transport rates to and from model membranes by the LE/LY phospholipid lysobisphosphatidic acid (LBPA). It had been previously shown that enrichment of NPC1-deficient cells with LBPA results in cholesterol clearance. Here we demonstrate that LBPA enrichment in human NPC2-deficient cells, either directly or via its biosynthetic precursor phosphtidylglycerol (PG), is entirely ineffective, indicating an obligate functional interaction between NPC2 and LBPA in cholesterol trafficking. We further demonstrate that NPC2 interacts directly with LBPA and identify the NPC2 hydrophobic knob domain as the site of interaction. Together these studies reveal a heretofore unknown step of intracellular cholesterol trafficking which is critically dependent upon the interaction of LBPA with functional NPC2 protein.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2236-2236
Author(s):  
Rocco Romagnuolo ◽  
Michael B Boffa ◽  
Marlys L Koschinsky

Abstract Abstract 2236 Lipoprotein(a) [Lp(a)] has been identified as an independent risk factor for cardiovascular diseases such as coronary heart disease. Lp(a) levels vary over 1000-fold within the human population and Lp(a) possesses both proatherogenic and prothrombotic properties due to the LDL-like moiety and apolipoprotein(a) [apo(a)] components, respectively. Apo(a) is highly homologous to plasminogen and thus can potentially interfere with plasminogen activation. Plasmin generated in the context of fibrin mediates the breakdown of blood clots, which are the causative factors in heart attacks and strokes. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. Previous studies have suggested that apo(a) may inhibit pericellular plasminogen activation on the basis of observations that apo(a) decreases plasminogen binding to cells. We have undertaken analysis of the mechanism by which apo(a) may interfere with pericellular plasminogen activation to allow for a more definitive description of the role of Lp(a) within the vasculature. Plasminogen activation was found to be markedly inhibited by the recombinant apo(a) variant 17K, in a dose dependent manner, on human umbilical vein endothelial cells (HUVECs), human monocytic leukemia cells (THP-1), THP-1 macrophages, and smooth muscle cells. The strong lysine binding site in kringle IV type 10, as well as kringle V appear to be required for this effect since apo(a) variants lacking these elements (17KΔAsp and 17KΔV, respectively) failed to inhibit activation. However, the role of lysine-dependent binding of apo(a) itself to the cells is not clear. Carboxypeptidase treatment of cells did not decrease apo(a) binding, and apo(a) does not compete directly for plasminogen binding to the cells. Rather, apo(a) and plasminogen may bind to the cells as a complex. We next attempted to identify the cell-surface receptor(s) that mediate plasminogen activation on the cell surface as well as its inhibition by apo(a). Urokinase-type plasminogen activator receptor (uPAR) has been previously shown to bind to urokinase-type plasminogen activator (uPA), vitronectin, and β3 integrins. uPAR is involved in the remodeling of the extracellular matrix (ECM) through regulation of plasminogen activation. We found evidence that uPAR is a potential receptor for both plasminogen and apo(a). Knockdown of uPAR in HUVECs results in decreased binding of plasminogen, 17K and, to a lesser extent, 17KΔAsp and 17KΔV. Similar experiments in SMCs revealed no changes in binding. A decrease in tPA-mediated plasminogen activation following uPAR knockdown occurred in HUVECs, and addition of 17K did not result in any further decrease. Overexpression of uPAR in THP-1 macrophages leads to greater than a two fold increase in 17K and plasminogen binding. Plasminogen activation increases over two-fold as a result of overexpression of uPAR, while 17K blunts the effect of uPAR overexpression. These results indicate that uPAR plays a crucial role in both plasminogen and apo(a) binding to the cell surface of specific cells and inhibition by apo(a) of plasminogen activation. Macrophage-1-antigen (Mac-1) receptor consists of CD11b (αM) and CD18 (β2) integrin and has been previously shown to recognize uPA and control migration and adhesion. Furthermore, αVβ3 has been previously shown to bind to vitronectin and the uPA-uPAR complex which promotes cell adhesion through binding of both vitronectin and αVβ3 integrins. We found that blocking the αM, β2, or αVβ3 receptors with monoclonal antibodies in THP-1 cells leads to a decrease in plasminogen activation, as well as a blunting of the inhibitory effects of apo(a) on plasminogen activation. These results indicate a role for Mac-1 and αVβ3 in apo(a) binding and inhibition of plasminogen activation. In conclusion, we have demonstrated, for the first time, the role of specific receptors in binding of apo(a) to vascular cell surfaces and in mediating the inhibitory effect of apo(a) on pericellular plasminogen activation. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 87 (03) ◽  
pp. 477-482 ◽  
Author(s):  
C. J. Cooke ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. A. Cooper ◽  
I. P. Stepanova ◽  
...  

SummaryPostprandial lipaemia is associated with activation of factor VII (FVII) and efflux of cholesterol from tissues to nascent plasma high density lipoproteins (HDL) containing apolipoprotein A-I (apo A-I). To determine whether FVII activation and cholesterol efflux occur together in other situations, the responses to intravenous infusion of HDL-like apo A-I/phosphatidylcholine discs were measured in 10 healthy men. Disc infusion (40 mg apo A-I/kg body weight) over 4 h was followed by increases in HDL cholesteryl ester and plasma apo A-I (p <0.0001). Significant activation of FVII was apparent during infusion in fasting subjects (p = 0.03), activated FVII averaging 123% of baseline value by 12 h (p <0.0001). Plasma thrombin-antithrombin (TAT) complex increased to 156% of baseline level by 12 h (p >0.05) but individual responses differed considerably. Peak TAT post-infusion was associated inversely with peak HDL triglyceride concentration (p = 0.004). The coagulation responses to disc-infusion may be due to transfer of phosphatidylserine to cell surfaces during cholesterol efflux.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shelley J. Edmunds ◽  
Rebeca Liébana-García ◽  
Karin G. Stenkula ◽  
Jens O. Lagerstedt

Abstract Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) induces glucose uptake by muscle tissues and stimulates pancreatic insulin secretion, and also facilitates cholesterol transport in circulation, and is explored for anti-diabetic and anti-atherosclerotic treatments. As the better alternative to complex protein–lipid formulations it was recently established that the C-terminal region of the ApoA-I protein singly improves the metabolic control and prevents formation of atherosclerotic plaques. Additional investigations of peptides based on the ApoA-I structure may lead to novel anti-diabetic drugs. We here investigate a short peptide (33mer, RG33) that corresponds to the two last helical segments (aa 209–241) of the ApoA-I structure (so-called class Y-helices which forms amphipathic helices) for stability and solubility in serum, for in vitro cholesterol efflux capability, and for providing in vivo glucose control in an insulin resistant mouse model. The RG33 peptide efficiently solubilizes lipid-vesicles, and promotes the efflux of cholesterol from cultured macrophages. The efflux capacity is significantly increased in the presence of lipids compared to non-lipidated RG33. Finally, acute treatment with the RG33 peptide significantly improves the glucose clearance capacity of insulin resistant mice. The impact of the RG33 peptide on glucose control and cholesterol transport, as well as the physicochemical properties, makes it a good candidate for translational exploration of its therapeutic potential in diabetes treatment.


2009 ◽  
Vol 29 (7) ◽  
pp. 1125-1130 ◽  
Author(s):  
Claudia Radojkovic ◽  
Annelise Genoux ◽  
Véronique Pons ◽  
Guillaume Combes ◽  
Hugo de Jonge ◽  
...  

2001 ◽  
Vol 358 (1) ◽  
pp. 79 ◽  
Author(s):  
Dmitri SVIRIDOV ◽  
Noel FIDGE ◽  
Gabrielle BEAUMIER-GALLON ◽  
Christopher FIELDING

2006 ◽  
Vol 86 (4) ◽  
pp. 1237-1261 ◽  
Author(s):  
Elina Ikonen

This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.


Sign in / Sign up

Export Citation Format

Share Document