Involvement of protein kinase D in Fcγ-receptor activation of the NADPH oxidase in neutrophils

2002 ◽  
Vol 363 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Jan K. DAVIDSON-MONCADA ◽  
Guillermo LOPEZ-LLUCH ◽  
Anthony W. SEGAL ◽  
Lodewijk V. DEKKER

Protein kinases involved in the activation of the NADPH oxidase by Fcγ receptors in neutrophils were studied. Of three different protein kinase C (PKC) inhibitors, Gö 6976 inhibited the NADPH oxidase completely, whereas bisindolylmaleimide I and Ro 31-8220 caused a 70–80% inhibition. Thus a Gö 6976-sensitive, bisindolylmaleimide I/Ro 31-8220-insensitive component contributes to NADPH oxidase activation induced by Fcγ receptors. Down-regulation of PKC isotypes resulted in inhibition of Fcγ-receptor-activated NADPH oxidase, but a down-regulation-insensitive component was still present. This component was sensitive to Gö 6976, but insensitive to Ro 31-8220. It has been shown previously that protein kinase D/PKC-μ (PKD) shows this same pharmacology in vitro. We show that PKD is present in neutrophils and that, in contrast with PKC isotypes, PKD is not down-regulated. Therefore PKD may participate in NADPH oxidase activation. To obtain direct evidence for this we adopted an antisense approach. Antisense PKD inhibited NADPH oxidase induced by Fcγ-receptor stimulation by 50% and the Ro 31-8220-insensitive component in the activation was inhibited by antisense PKD. In vitro kinase assays showed that PKD is activated by presenting IgG-opsonized particles to neutrophils. Furthermore, PKD localizes to the area of particle intake in the cell and phosphorylates two of the three cytosolic components of the NADPH oxidase, p40phox and p47phox. Taken together, these data indicate that Fcγ receptors engage PKD in the regulation of the NADPH oxidase.

2002 ◽  
Vol 363 (1) ◽  
pp. 95 ◽  
Author(s):  
Jan K. DAVIDSON-MONCADA ◽  
Guillermo LOPEZ-LLUCH ◽  
Anthony W. SEGAL ◽  
Lodewijk V. DEKKER

2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


2007 ◽  
Vol 459 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Annalisa Iaccio ◽  
Claudio Collinet ◽  
Nicola Montesano Gesualdi ◽  
Rosario Ammendola

2010 ◽  
Vol 9 (5) ◽  
pp. 1136-1146 ◽  
Author(s):  
Kuzhuvelil B. Harikumar ◽  
Ajaikumar B. Kunnumakkara ◽  
Nobuo Ochi ◽  
Zhimin Tong ◽  
Amit Deorukhkar ◽  
...  

2010 ◽  
Vol 21 (13) ◽  
pp. 2327-2337 ◽  
Author(s):  
Sokha Nhek ◽  
Mike Ngo ◽  
Xuemei Yang ◽  
Michelle M. Ng ◽  
Seth J. Field ◽  
...  

Protein kinase D (PKD) plays a critical role at the trans-Golgi network by regulating the fission of transport carriers destined for the plasma membrane. Two known Golgi-localized PKD substrates, PI4-kinase IIIβ and the ceramide transfer protein CERT, mediate PKD signaling to influence vesicle trafficking to the plasma membrane and sphingomyelin synthesis, respectively. PKD is recruited and activated at the Golgi through interaction with diacylglycerol, a pool of which is generated as a by-product of sphingomyelin synthesis from ceramide. Here we identify a novel substrate of PKD at the Golgi, the oxysterol-binding protein OSBP. Using a substrate-directed phospho-specific antibody that recognizes the optimal PKD consensus motif, we show that PKD phosphorylates OSBP at Ser240 in vitro and in cells. We further show that OSBP phosphorylation occurs at the Golgi. Phosphorylation of OSBP by PKD does not modulate dimerization, sterol binding, or affinity for PI(4)P. Instead, phosphorylation attenuates OSBP Golgi localization in response to 25-hydroxycholesterol and cholesterol depletion, impairs CERT Golgi localization, and promotes Golgi fragmentation.


1999 ◽  
Vol 277 (6) ◽  
pp. C1202-C1209 ◽  
Author(s):  
Robert S. Haworth ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt ◽  
Metin Avkiran

The regulation of plasma membrane Na+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel protein kinase C- and phorbol ester-regulated kinase, was investigated. To determine the effect of PKD on NHE activity in vivo, intracellular pH (pHi) measurements were made in COS-7 cells by microepifluorescence using the pH indicator cSNARF-1. Cells were transfected with empty vector (control), wild-type PKD, or its kinase-deficient mutant PKD-K618M, together with green fluorescent protein (GFP). NHE activity, as reflected by the rate of acid efflux ( J H), was determined in single GFP-positive cells following intracellular acidification. Overexpression of wild-type PKD had no significant effect on J H(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control at pHi 7.0). In contrast, overexpression of PKD-K618M increased J H (5.31 ± 0.57 mM/min at pHi 7.0; P < 0.05 vs. control). Transfection with these constructs produced similar effects also in A-10 cells, indicating that native PKD may have an inhibitory effect on NHE in both cell types, which is relieved by a dominant-negative action of PKD-K618M. Exposure of COS-7 cells to phorbol ester significantly increased J H in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M (because basal J Hwas already near maximal). A fusion protein containing the cytosolic regulatory domain (amino acids 637–815) of NHE1 (the ubiquitous NHE isoform) was phosphorylated in vitro by wild-type PKD, but with low stoichiometry. These data suggest that PKD inhibits NHE activity, probably through an indirect mechanism, and represents a novel pathway in the regulation of the exchanger.


Sign in / Sign up

Export Citation Format

Share Document