scholarly journals Long non-coding RNA PSMA3-AS1 enhances cell proliferation, migration and invasion by regulating miR-302a-3p/RAB22A in glioma

2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Li-li Zhou ◽  
Meng Zhang ◽  
Yan-zhen Zhang ◽  
Mei-fen Sun

Abstract Glioma is the most prevalent solid tumor in the central nervous system (CNS). Recently, it has been indicated that long non-coding RNAs (lncRNAs) substantially adjust the development of a variety of human cancers. In the present study, it was found and verified via microarray analysis that lncRNA PSMA3-AS1 exhibited a high expression in glioma tissues and cell lines. Then CCK-8, 5-Ethynyl-2′-deoxyuridine (EdU) staining, plate clone assay, Transwell assay, Western blotting and nude mouse model were adopted to verify PSMA3-AS1’s effects on glioma. Knockdown of PSMA3-AS1 inhibited the migration, proliferation and invasion of glioma cells in vivo and in vitro. Besides, PSMA3-AS1 bound to miR-302a-3p directly reduced the expression of miR-302a-3p, thus functioning as an endogenous sponge confirmed by luciferase reporter assay and bioinformatics analysis. PSMA3-AS1 knockdown remarkably enhanced the role of miR-302a-3p overexpression in cell behaviors in glioma. Moreover, these assays also confirmed that RAB22A was a target of miR-302a-3p. In this research, therefore, the PSMA3-AS1/miR-302a-3p/RAB22A pathway regulatory axis may be revealed in the pathogenesis of glioma, and PSMA3-AS1 can be used as an underlying target for the treatment and prognosis of glioma.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liting You ◽  
Qian Wu ◽  
Zhaodan Xin ◽  
Huiyu Zhong ◽  
Juan Zhou ◽  
...  

Abstract Background miR-124-3p can inhibit integrin β3 (ITGB3) expression to suppress the migration and invasion of gastric cancer (GC), and in the process lncRNA HOXA11-AS may act as a molecular sponge. Methods Luciferase reporter assay was conducted to verify the binding of miR-124-3p and HOXA11-AS. RT-PCR and western blot were performed to detect the expression of HOXA11-AS, miR-124-3p and ITGB3 in GC tissues and cells. Gene silence and overexpression experiments as well as cell migration and invasion assays on GC cell lines were performed to determine the regulation of molecular pathways, HOXA11-AS/miR-124-3p/ITGB3. Furthermore, the role of HOXA11-AS in GC was confirmed in mice models. Results We found HOXA11-AS is up-regulated in GC tissues and can bind with miR-124-3p. Through overexpression/knockdown experiments and function tests in vitro, we demonstrated HOXA11-AS can promote ITGB3 expression by sponging miR-124-3p, consequently enhance the proliferation, migration, and invasion of GC cells. Meanwhile, we validated that HOXA11-AS promotes migration and invasion of GC cells via down-regulating miR-124-3p and up-regulating ITGB3 in vivo. Conclusions We demonstrated that lncRNA HOXA11-AS can increase ITGB3 expression to promote the migration and invasion of gastric cancer by sponging miR-124-3p. Our results suggested that HOXA11-AS may reasonably serve as a promising diagnostic biomarker and a potential therapeutic target of GC.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Author(s):  
Xin Liu ◽  
Zhenghao Huang ◽  
Honglei Qin ◽  
Jingwen Chen ◽  
Yang Zhao

Abstract BackgroundLong non-coding RNA (LncRNA) has been exhibited to exert significant function among human cancers. AC022306.2, as a newly discovered lncRNA, has an unclear function in ovarian cancer (OC). This study aims to uncover the functional role of AC022306.2 in OC and discover its possible mechanism. MethodsThe expression of AC022306.2 and Galactokinase 2 (GALK2) in OC tissues and adjacent non-tumor tissues was detected via qRT-PCR. The CCK-8 assay, cell clonogenesis assay, scratch healing assay and trans-well assay were used to reveal the function of AC022306.2 and GALK2 in ovarian cancer cell lines. Mice xenografts experiment was performed. Bioinformatics predicted the microRNA (miRNA) that bond with AC022306.2 and GALK2, and dual luciferase reporter system confirmed it. Rescue experiments of miRNA mimics and siGALK2 transfection on the basis of AC022306.2 over-expression were carried out to uncover the mechanism by which AC022306.2 played cancer-promoting roles in ovarian cancer.ResultsIt was found that AC022306.2 was up-regulated in EOC tissues compared with adjacent non-tumor tissues. The elevated expression of AC022306.2 was related to the FIGO stage of OC. Functional experiments showed that AC022306.2 overexpression accelerated proliferation and aggression of OC cells in vitro and accelerated tumor growth in vivo. We also found that GALK2 was up-regulated in OC tissues. The expression of GALK2 mRNA in OC tissue was positively associated with the expression of AC022306.2. After AC022306.2 was knocked down, the expression of GALK2 was down-regulated. In addition, GALK2 depletion restored the proliferation and aggression capabilities of OC cells after AC022306.2 overexpression. Mechanically, AC022306.2 acted as a competitive endogenous RNA (ceRNA) of miR-369-3p to modulate the expression of GALK2. The up-regulating of miR-369-3p or the down-regulating of GALK2 partially reversed the effect of AC022306.2 overexpressed on cell propagation and aggression in OC. ConclusionsAC022306.2 is a new oncogene in the carcinogenesis and development of OC. AC022306.2 improves the development of OC by regulating the miR-369-3p / GALK2 axis, indicating that AC022306.2 may have the potential to become a new molecular target for the treatment of OC.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yanling Li ◽  
Ying Lu ◽  
Yanglong Chen

Abstract Previous study has explored that SNHG16, a long non-coding RNA (lncRNA), mediated cell growth and proliferation. Yet, the role of SNHG16 in human colorectal cancer (CRC) still remains to be explored. Therefore, we conducted the present study to explore the functions of SNHG16 in CRC. In the present study, SNHG16 was significantly up-regulated in CRC tissues and cell lines. Gain- and loss-of-function of SNHG16 further presented that SNHG16 promoted the progression of CRC cells, including proliferation, migration, and invasion. Further, in vivo study also revealed that overexpression of SNHG16 could promote tumor growth. Bioinformatics analysis and luciferase reporter assay showed that SNHG16 was a direct target of miR-200a-3p. MiR-200a-3p was inversely correlated with SNHG16 expression in CRC tissues. In brief, the above results elucidate the important role of SNHG16 in CRC tumorigenesis, suggesting that SNHG16 might be quite vital for the diagnosis and development of CRC.


IUBMB Life ◽  
2018 ◽  
Vol 71 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Qi Wang ◽  
Zhong-Wei Zhuang ◽  
Yi-Ming Cheng ◽  
Ji-Qiang Ma ◽  
Shi-Yi Xu ◽  
...  

2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2021 ◽  
Author(s):  
Feng Ying Zhang ◽  
Xia Li ◽  
Ting Ting Huang ◽  
Mei Ling Xiang ◽  
Lin Lin Sun ◽  
...  

Abstract Background Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a cancer-promoting gene in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be elaborated, as well as its underlying mechanism.Methods LINC00839 and miR-454-3p relative expression levels in NPC cells were examined by qRT-PCR. The growth of cells was examined by CCK-8 and colony formation assays. Cell migration and invasion were examined by wound healing and Transwell experiment, respectively. The binding sequence of LINC00839 and miR-454-3p was confirmed by the luciferase reporter gene experiment. The regulatory function of LINC00839 and miR-454-3p on c-Met was investigated by western blot.Results Here, we revealed that LINC00839 was elevated in NPC. Both LINC00839 knockdown and upregulation of miR-454-3p suppressed NPC cells proliferation, invasive capacity and EMT in vitro. Besides, LINC00839 was validated as a miR-454-3p “sponge”, and upregulation of LINC00839 could reverse miR-454-3p-mediated functions in NPC C666-1 and SUNE-1 cells. Furthermore, c-Met was determined to be targeted by miR-454-3p. Notably, c-Met was downregulated by LINC00839 knockdown through sponging miR-454-3p. In vivo, LINC00839 knockdown resulted in a slower tumor growth.Conclusions Altogether, knockdown of LINC00839 inhibits the aggressive properties of NPC cells via sponging miR-454-3p and regulating c-Met.


Sign in / Sign up

Export Citation Format

Share Document