Protective peptides derived from novel glial proteins

2000 ◽  
Vol 28 (4) ◽  
pp. 452-455 ◽  
Author(s):  
D. E. Brenneman ◽  
C. Y. Spong ◽  
I. Gozes

In studying the mediators of VIP neurotrophism in the central nervous system, two glial proteins have been discovered. Both of these proteins contain short peptides that exhibit femtomolar potency in preventing neuronal cell death from a wide variety of neurotoxic substances. Extension of these peptides to models of oxidative stress or neurodegeneration in vivo have indicated significant efficacy in protection. These peptides, both as individual agents and in combination, have promise as possible protective agents in the treatment of human neurodegenerative disease and in pathologies involving oxidative stress.

Author(s):  
Sarah A Neely ◽  
Jill M Williamson ◽  
Anna Klingseisen ◽  
Lida Zoupi ◽  
Jason J Early ◽  
...  

Regeneration of myelin (remyelination) in the central nervous system (CNS) has long been thought to be principally mediated by newly generated oligodendrocytes, a premise underpinning therapeutic strategies for demyelinating diseases, including multiple sclerosis (MS). Recent studies have indicated that oligodendrocytes that survive demyelination can also contribute to remyelination, including in MS, but it is unclear how remyelination by surviving oligodendrocytes compares to that of newly generated oligodendrocytes. Here we studied oligodendrocytes in MS, and also imaged remyelination in vivo by surviving and new oligodendrocytes using zebrafish. We define a previously unappreciated pathology in MS, myelination of neuronal cell bodies, which is recapitulated during remyelination by surviving oligodendrocytes in zebrafish. Live imaging also revealed that surviving oligodendrocytes make very few new sheaths, but can support sheath growth along axons. In comparison, newly made oligodendrocytes make abundant new sheaths, properly targeted to axons, and exhibit a much greater capacity for regeneration.


Physiology ◽  
2008 ◽  
Vol 23 (5) ◽  
pp. 263-274 ◽  
Author(s):  
Tamer Rabie ◽  
Hugo H. Marti

Many hematopoietic growth factors are produced locally in the brain. Among these, erythropoietin (Epo), has a dominant role for neuroprotection, neurogenesis, and acting as a neurotrophic factor in the central nervous system. These functions make erythropoietin a good candidate for treating diseases associated with neuronal cell death.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marion Clé ◽  
Orianne Constant ◽  
Jonathan Barthelemy ◽  
Caroline Desmetz ◽  
Marie France Martin ◽  
...  

Abstract Background Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. Methods The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). Results Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. Conclusions Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.


2021 ◽  
Vol 11 (11) ◽  
pp. 2128-2136
Author(s):  
Weihua Liu ◽  
Xinli Wang ◽  
Liangqin Du ◽  
Yanlin Sun

Excitotoxicity caused by glutamate severely damages the central nervous system, contributing to the progress of neurodegenerative diseases. Remifentanil is an ultra-short acting synthetic α-opioid receptor agonist and it protects the body against oxidative stress. Oxidative stress is a causative factor for neuronal cell death, contributing to the pathogenesis of neurological diseases. More importantly, remifentanil has been confirmed to have neuroprotective effects on cerebral ischemia. Hence, the aim of the present study was to investigate the molecular mechanism underlying the effect of remifentanil on glutamate (Glu)-induced oxidative stress and inflammation in hippocampal cells. In present study, the cell viability was detected via CCk-8 assay. The cell apoptosis was evaluated by tunel assay. Western blot was performed for measurement of protein expression level. Generation of ROS level was detected by the ROS Activity Assay Kit (KA3842, Abnova) and DCF-DA staining method. MDA and SOD levels were detected by corresponding kits. The results from the present study suggested that remifentanil enhanced cell viability, reduced cell apoptosis rate and prevented oxidative stress in glutamate-induced HT22 cells. The PPARγ/HO-1 pathway was activated by remifentanil. After inhibition of PPARγ/HO-1 pathway, the anti-apoptosis and anti-oxidative stress effects of remifentanil were abolished. In conclusion, remifentanil has anti-apoptosis and anti-oxidative stress effects on glutamate-induced HT22 Cells via PPARγ/HO-1 pathway. Hence, remifentanil is a promising agent for attenuation of cytotoxicity induced by glutamate, providing a new strategy for treatment of excitotoxicity caused by glutamate in the central nervous system.


2020 ◽  
Vol 18 (9) ◽  
pp. 861-867
Author(s):  
Kai Chen ◽  
Liu Nan Yang ◽  
Chuan Lai ◽  
Dan Liu ◽  
Ling-Qiang Zhu

Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of GRINA has been reported in multiple diseases in human beings, such as major depressive disorder (MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this review, we provide a general overview of the expression and physiological function of GRINA in the central nervous system (CNS) diseases, including stroke, depression ,epilepsy, SCZ, and Alzheimer’s disease (AD).


2021 ◽  
Vol 11 (11) ◽  
pp. 1373
Author(s):  
Shashank Vishwanath Adhikarla ◽  
Niraj Kumar Jha ◽  
Vineet Kumar Goswami ◽  
Ankur Sharma ◽  
Anuradha Bhardwaj ◽  
...  

A special class of proteins called Toll-like receptors (TLRs) are an essential part of the innate immune system, connecting it to the adaptive immune system. There are 10 different Toll-Like Receptors that have been identified in human beings. TLRs are part of the central nervous system (CNS), showing that the CNS is capable of the immune response, breaking the long-held belief of the brain’s “immune privilege” owing to the blood–brain barrier (BBB). These Toll-Like Receptors are present not just on the resident macrophages of the central nervous system but are also expressed by the neurons to allow them for the production of proinflammatory agents such as interferons, cytokines, and chemokines; the activation and recruitment of glial cells; and their participation in neuronal cell death by apoptosis. This study is focused on the potential roles of various TLRs in various neurodegenerative diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), namely TLR2, TLR3, TLR4, TLR7, and TLR9 in AD and PD in human beings and a mouse model.


Sign in / Sign up

Export Citation Format

Share Document