Modulation of carbohydrate and fat utilization by diet, exercise and environment

2003 ◽  
Vol 31 (6) ◽  
pp. 1270-1273 ◽  
Author(s):  
A.E. Jeukendrup

At rest and during exercise carbohydrate and fat are the predominant substrates. They are oxidized simultaneously but the relative contribution of these two substrates is dependent on a variety of factors including the exercise intensity and duration, diet, environmental conditions and training status. Changes in carbohydrate metabolism during the transition from rest to exercise and from low- to high-intensity exercise are mainly due to allosteric regulation. The factors that up-regulate fat metabolism in the transition to moderate-intensity exercise and the factors that result in a down-regulation of fat metabolism at higher intensities are incompletely understood. Substrate use is further modulated by the endocrine milieu (e.g. catecholamines, insulin, cortisol) and possibly cytokines (e.g. interleukin-6). With increasing duration of exercise there are marked increases in fat metabolism and decreases in carbohydrate metabolism and this has been ascribed mainly to substrate availability. Both acute food intake and chronic diets also have profound effects on substrate utilization. An increase in carbohydrate intake will rapidly suppress fat metabolism and increase carbohydrate metabolism whereas such an adaptation to a high-fat diet may take several days. The environmental conditions can also alter substrate use; high ambient temperatures can increase glycogen breakdown as a result of increased body core temperature and increased circulation catecholamines. Low temperatures can also increase carbohydrate metabolism, especially when shivering. In addition to these factors adaptation to training, in particular endurance training, will reduce the reliance on carbohydrate metabolism and increase fat oxidation, especially from intramuscular triacylglycerol stores.

2013 ◽  
Vol 84 (11) ◽  
pp. 1153-1158 ◽  
Author(s):  
Jayme D. Limbaugh ◽  
Gregory S. Wimer ◽  
Lynn H. Long ◽  
William H. Baird

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S5-S6
Author(s):  
Craig G Crandall ◽  
Luke N Belval ◽  
Matthew N Cramer ◽  
Mu Huang ◽  
Gilbert Moralez ◽  
...  

Abstract Introduction Burned skin excision and subsequent grafting removes sweat glands, which impairs thermoregulation. Consequently, exercise prescribed for rehabilitation may expose individuals with burn injuries to a greater risk of hyperthermia, depending on exercise duration, intensity, and environmental temperature. Little is known regarding the risk of hyperthermia in adult burn survivors performing mild/moderate-intensity exercise under thermoneutral environmental conditions, i.e. conditions similar to the rehabilitation clinic and/or the gym. This project tested the hypothesis that burn survivors, across a wide range of percent total body surface area (%TBSA) burned, can participate in mild/moderate-intensity exercise in a thermoneutral environment without excessive elevations in core body temperature. Methods Twenty-eight well-healed burn survivors with low (23±5%TBSA; N=10), moderate (42±7%TBSA; N=9), and high (60±8%TBSA; N=9) sized burn injuries performed 60 minutes of cycle ergometry exercise (72±15 Watts, oxygen uptake rate of 1.25±0.21 L/min equivalent to 4.5±0.2 METs) in a 25°C and 23% relative humidity environment. Absolute gastrointestinal temperatures (Tcore) and changes in gastrointestinal temperatures (ΔTcore) were obtained at 15-minute increments throughout the exercise bout. A participant with an absolute Tcore of greater than 38.5°C, and/or a ΔTcore of >1.5°C, at any time point during the trial was categorized as being at risk for hyperthermia. Results Sixty minutes of exercise increased Tcore in all groups (Low: 0.72±0.21°C; Moderate: 0.42±0.22°C; High: 0.77±0.25°C, all P< 0.01 from pre-exercise baseline), resulting in similar absolute Tcore values of upon exercise termination (Low: 37.87±0.24°C; Moderate: 37.56±0.34°C; High: 37.76±0.47°C, P=0.19). Importantly, no participant was categorized as being at risk for hyperthermia, based upon the aforementioned criteria. Conclusions These data indicate that individuals with substantial %TBSA burned can exercise at a mild/moderate intensity for 60 minutes in thermoneutral environmental conditions without a risk of excessive elevations in body core temperature.


1996 ◽  
Vol 271 (6) ◽  
pp. E983-E989 ◽  
Author(s):  
S. Sial ◽  
A. R. Coggan ◽  
R. Carroll ◽  
J. Goodwin ◽  
S. Klein

We evaluated the effect of aging on fat and carbohydrate metabolism during moderate intensity exercise. Glycerol, free fatty acid (FFA), and glucose rate of appearance (Ra) in plasma and substrate oxidation were determined during 60 min of cycle ergometer exercise in six elderly (73 +/- 2 yr) and six young adults (26 +/- 2 yr) matched by gender and lean body mass. The elderly group was studied during exercise performed at 56 +/- 3% of maximum oxygen uptake, whereas the young adults were studied during exercise performed at the same absolute and at a similar relative intensity as the elderly subjects. Mean fat oxidation during exercise was 25-35% lower in the elderly subjects than in the young adults exercising at either the same absolute or similar relative intensities (P < 0.05). Mean carbohydrate oxidation in the elderly group was 35% higher than the young adults exercising at the same absolute intensity (P < 0.001) but 40% lower than the young adults exercising at the same relative intensity (P < 0.001). Average FFA Ra in the elderly subjects was 85% higher than in the young adults exercising at the same absolute intensity (P < 0.05) but 35% lower than the young adults exercising at a similar relative intensity (P < 0.05). We conclude that fat oxidation is decreased while carbohydrate oxidation is increased during moderate intensity exercise in elderly men and women. The shift in substrate oxidation was caused by age-related changes in skeletal muscle respiratory capacity because lipolytic rates and FFA availability were not rate limiting in the older subjects.


Author(s):  
S. Tony Wolf ◽  
Mireille A. Folkerts ◽  
Rachel M. Cottle ◽  
Hein A.M. Daanen ◽  
W. Larry Kenney

Critical environmental limits are environmental thresholds above which heat gain exceeds heat loss and body core temperature (Tc) cannot be maintained at equilibrium. Those limits can be represented as critical wet-bulb globe temperature (WBGTcrit), a validated index that represents the overall thermal environment. Little is known about WBGTcrit at rest and during low-to-moderate intensity exercise, or sex differences in WBGTcrit, in unacclimated young adults. The following hypotheses were tested: (1) WBGTcrit progressively decreases as metabolic heat production (Mnet) increases, (2) no sex differences in WBGTcrit occur at rest, and (3) WBGTcrit is lower during absolute-intensity exercise but higher at relative intensities in women compared to men. Thirty-six participants (19M/17W; 23±4 yr) were tested at rest, during light, absolute-intensity exercise (10 W), or during moderate, relative-intensity exercise (30% V̇O2max) in an environmental chamber. Dry-bulb temperature was clamped as relative humidity or ambient water vapor pressure was increased until an upward inflection was observed in Tc (rectal or esophageal temperature). Sex-aggregated WBGTcrit was lower during 10 W (32.9±1.7°C, P<0.0001) and 30% V̇O2max (31.6±1.1°C, P<0.0001) exercise vs. rest (35.3±0.8°C), and lower at 30% V̇O2max vs. 10 W (P=0.01). WBGTcrit was similar between sexes at rest (35.6±0.8°C vs. 35.0±0.8°C, P=0.83), but lower during 10 W (31.9±1.7°C vs. 34.1±0.3°C, P<0 .01) and higher during 30% V̇O2max (32.4±0.8°C vs. 30.8±0.9°C, P=0.03) exercise in women vs. men. These findings suggest that WBGTcrit decreases as Mnet increases, no sex differences occur in WBGTcrit at rest, and sex differences in WBGTcrit during exercise depend upon absolute vs. relative intensities.


2018 ◽  
Vol 125 (4) ◽  
pp. 1284-1295 ◽  
Author(s):  
Alexandros Sotiridis ◽  
Tadej Debevec ◽  
Adam C. McDonnell ◽  
Urša Ciuha ◽  
Ola Eiken ◽  
...  

We examined the effects of acclimatization to normobaric hypoxia on aerobic performance and exercise thermoregulatory responses under normoxic, hypoxic, and hot conditions. Twelve men performed tests of maximal oxygen uptake (V̇O2max) in normoxic (NOR), hypoxic [HYP; 13.5% fraction of inspired oxygen (FiO2)], and hot (HE; 35°C, 50% relative humidity) conditions in a randomized manner before and after a 10-day continuous normobaric hypoxic exposure [FiO2 = 13.65 (0.35)%, inspired partial pressure of oxygen = 87 (3) mmHg]. The acclimatization protocol included daily exercise [60 min at 50% hypoxia-specific peak power output (Wpeak)]. All maximal tests were preceded by a steady-state exercise (30 min at 40% Wpeak) to assess the sweating response. Hematological data were assessed from venous blood samples obtained before and after acclimatization. V̇o2max increased by 10.7% ( P = 0.002) and 7.9% ( P = 0.03) from pre-acclimatization to post acclimatization in NOR and HE, respectively, whereas no differences were found in HYP [pre: 39.9 (3.8) vs. post: 39.4 (5.1) ml·kg−1·min−1, P = 1.0]. However, the increase in V̇O2max did not translate into increased Wpeak in either NOR or HE. Maximal heart rate and ventilation remained unchanged following acclimatization. Νo differences were noted in the sweating gain and thresholds independent of the acclimatization or environmental conditions. Hypoxic acclimatization markedly increased hemoglobin ( P < 0.001), hematocrit ( P < 0.001), and extracellular HSP72 ( P = 0.01). These data suggest that 10 days of normobaric hypoxic acclimatization combined with moderate-intensity exercise training improves V̇o2max in NOR and HE, but does not seem to affect exercise performance or thermoregulatory responses in any of the tested environmental conditions. NEW & NOTEWORTHY The potential crossover effect of hypoxic acclimatization on performance in the heat remains unexplored. Here we show that 10-day continuous hypoxic acclimatization combined with moderate-intensity exercise training can increase maximal oxygen uptake in hot conditions.


2019 ◽  
Vol 126 (2) ◽  
pp. 305-313
Author(s):  
Naoto Fujii ◽  
Miki Kashihara ◽  
Glen P. Kenny ◽  
Yasushi Honda ◽  
Tomomi Fujimoto ◽  
...  

Hyperthermia causes hyperventilation at rest and during exercise. We previously reported that carotid chemoreceptors partly contribute to the hyperthermia-induced hyperventilation at rest. However, given that a hyperthermia-induced hyperventilation markedly differs between rest and exercise, the results obtained at rest may not be representative of the response in exercise. Therefore, we evaluated whether carotid chemoreceptors contribute to hyperthermia-induced hyperventilation in exercising humans. Eleven healthy young men (23 ± 2 yr) cycled in the heat (37°C) at a fixed submaximal workload equal to ~55% of the individual’s predetermined peak oxygen uptake (moderate intensity). To suppress carotid chemoreceptor activity, 30-s hyperoxia breathing (100% O2) was performed at rest (before exercise) and during exercise at increasing levels of hyperthermia as defined by an increase in esophageal temperature of 0.5°C (low), 1.0°C (moderate), 1.5°C (high), and 2.0°C (severe) above resting levels. Ventilation during exercise gradually increased as esophageal temperature increased (all P ≤ 0.05), indicating that hyperthermia-induced hyperventilation occurred. Hyperoxia breathing suppressed ventilation in a greater manner during exercise (−9 to −13 l/min) than at rest (−2 ± 1 l/min); however, the magnitude of reduction during exercise did not differ at low (0.5°C) to severe (2.0°C) increases in esophageal temperature (all P > 0.05). Similarly, hyperoxia-induced changes in ventilation during exercise as assessed by percent change from prehyperoxic levels were not different at all levels of hyperthermia (~15–20%, all P > 0.05). We show that in young men carotid chemoreceptor contribution to hyperthermia-induced hyperventilation is relatively small at low-to-severe increases in body core temperature induced by moderate-intensity exercise in the heat. NEW & NOTEWORTHY Exercise-induced increases in hyperthermia cause a progressive increase in ventilation in humans. However, the mechanisms underpinning this response remain unresolved. We showed that in young men hyperventilation associated with exercise-induced hyperthermia is not predominantly mediated by carotid chemoreceptors. This study provides important new insights into the mechanism(s) underpinning the regulation of hyperthermia-induced hyperventilation in humans and suggests that factor(s) other than carotid chemoreceptors play a more important role in mediating this response.


2009 ◽  
Vol 24 (5) ◽  
pp. 408-415 ◽  
Author(s):  
Otto Henriksson ◽  
J. Peter Lundgren ◽  
Kalev Kuklane ◽  
Ingvar Holmér ◽  
Ulf Bjornstig

AbstractIntroduction:In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence.Objective:The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services.Methods:The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (< 0.5 m/s), moderate (2–3 m/s) and high (8–9 m/s) wind condi-tions. During steady state thermal transfer, the total resultant insulation value, Itr (m2 °C/Wclo; where °C = degrees Celcius, and W = watts), was calculated from ambient air temperature (°C), manikin surface temperature (°C), and heat flux (W/m2).Results:In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 °C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60–80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30–50% of original insulation capacity.Conclusions:The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended outdoor, on-scene durations, such as during prolonged extrications or in mul-tiple casualty situations, the results of this study emphasize the importance of using a windproof and compression resistant outer ensemble to maintain adequate insulation capacity.


Author(s):  
Andrew P. Hunt ◽  
Adam W. Potter ◽  
Denise M. Linnane ◽  
Xiaojiang Xu ◽  
Mark J. Patterson ◽  
...  

Objective The aim of this study was to model the effect of body armor coverage on body core temperature elevation and wet-bulb globe temperature (WBGT) offset. Background Heat stress is a critical factor influencing the health and safety of military populations. Work duration limits can be imposed to mitigate the risk of exertional heat illness and are derived based on the environmental conditions (WBGT). Traditionally a 3°C offset to WBGT is recommended when wearing body armor; however, modern body armor systems provide a range of coverage options, which may influence thermal strain imposed on the wearer. Method The biophysical properties of four military clothing ensembles of increasing ballistic protection coverage were measured on a heated sweating manikin in accordance with standard international criteria. Body core temperature elevation during light, moderate, and heavy work was modeled in environmental conditions from 16°C to 34°C WBGT using the heat strain decision aid. Results Increasing ballistic protection resulted in shorter work durations to reach a critical core temperature limit of 38.5°C. Environmental conditions, armor coverage, and work intensity had a significant influence on WBGT offset. Conclusion Contrary to the traditional recommendation, the required WBGT offset was >3°C in temperate conditions (<27°C WBGT), particularly for moderate and heavy work. In contrast, a lower WBGT offset could be applied during light work and moderate work in low levels of coverage. Application Correct WBGT offsets are important for enabling adequate risk management strategies for mitigating risks of exertional heat illness.


Sign in / Sign up

Export Citation Format

Share Document