The p110δ subunit of phosphoinositide 3-kinase is required for the lipopolysaccharide response of mouse B cells

2004 ◽  
Vol 32 (5) ◽  
pp. 789-791 ◽  
Author(s):  
B.J. Hebeis ◽  
E. Vigorito ◽  
M. Turner

PI3K (phosphoinositide 3-kinase) IA family members contain a regulatory subunit and a catalytic subunit. The p110δ catalytic subunit is expressed predominantly in haematopoietic cells. There, among other functions, it regulates antigen receptor-mediated responses. Using mice deficient in the p110δ subunit of PI3K, we investigated the role of this subunit in LPS (lipopolysaccharide)-induced B cell responses, which are mediated by Toll-like receptor 4 and RP105. After injection of DNP-LPS (where DNP stands for 2,4-dinitrophenol), p110δ−/− mice produced reduced levels of DNP-specific IgM and IgG when compared with wild-type mice. In vitro, the proliferation and up-regulation of surface activation markers such as CD86 and CD25 induced by LPS and an antibody against RP105 were decreased. We analysed the activation state of key components of the LPS pathway in B cells to determine whether there was a defect in signalling in p110δ−/− B cells. They showed normal extracellular-signal-regulated kinase phosphorylation, but anti-RP105-induced protein kinase B, IκB (inhibitor of nuclear factor κB) and c-Jun N-terminal kinase activation was severely reduced. This demonstrates that the p110δ subunit of PI3K is involved in the LPS response in B cells and may represent a link between the innate and the adaptive immune system.

2007 ◽  
Vol 408 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Ping Wang ◽  
Puneet Kumar ◽  
Chang Wang ◽  
Kathryn A. DeFea

PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Gαq/Ca2+-dependent activation and β-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of β-arrestins in the regulation of PI3K activity. Whereas the ability of β-arrestin-1 to inhibit p110α (PI3K catalytic subunit α) has been demonstrated, the role of β-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110α and p110β) associated with p85α (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110α- and p110β-associated lipid kinase activities, and both p110α and p110β are inhibited by over-expression of either β-arrestin-1 or -2; (ii) both β-arrestin-1 and -2 directly inhibit the p110α catalytic subunit in vitro, whereas only β-arrestin-2 directly inhibited p110β; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) β-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that β-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two β-arrestins differ in their ability to inhibit the p110α and p110β catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for β-arrestin-dependent signalling events.


2002 ◽  
Vol 13 (2) ◽  
pp. 480-492 ◽  
Author(s):  
Tom D. Wolkow ◽  
Tamar Enoch

Fission yeast Rad3 is a member of a family of phosphoinositide 3-kinase -related kinases required for the maintenance of genomic stability in all eukaryotic cells. In fission yeast, Rad3 regulates the cell cycle arrest and recovery activities associated with the G2/M checkpoint. We have developed an assay that directly measures Rad3 kinase activity in cells expressing physiological levels of the protein. Using the assay, we demonstrate directly that Rad3 kinase activity is stimulated by checkpoint signals. Of the five other G2/M checkpoint proteins (Hus1, Rad1, Rad9, Rad17, and Rad26), only Rad26 was required for Rad3 kinase activity. Because Rad26 has previously been shown to interact constitutively with Rad3, our results demonstrate that Rad26 is a regulatory subunit, and Rad3 is the catalytic subunit, of the Rad3/Rad26 kinase complex. Analysis of Rad26/Rad3 kinase activation in rad26.T12, a mutant that is proficient for cell cycle arrest, but defective in recovery, suggests that these two responses to checkpoint signals require quantitatively different levels of kinase activity from the Rad3/Rad26 complex.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg2697
Author(s):  
Jiye Liu ◽  
Teru Hideshima ◽  
Lijie Xing ◽  
Su Wang ◽  
Wenrong Zhou ◽  
...  

Immunomodulatory drugs (IMiDs) have markedly improved patient outcome in multiple myeloma (MM); however, resistance to IMiDs commonly underlies relapse of disease. Here, we identify that tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) knockdown (KD)/knockout (KO) in MM cells mediates IMiD resistance via activation of noncanonical nuclear factor κB (NF-κB) and extracellular signal–regulated kinase (ERK) signaling. Within MM bone marrow (BM) stromal cell supernatants, TNF-α induces proteasomal degradation of TRAF2, noncanonical NF-κB, and downstream ERK signaling in MM cells, whereas interleukin-6 directly triggers ERK activation. RNA sequencing of MM patient samples shows nearly universal ERK pathway activation at relapse on lenalidomide maintenance therapy, confirming its clinical relevance. Combination MEK inhibitor treatment restores IMiD sensitivity of TRAF2 KO cells both in vitro and in vivo. Our studies provide the framework for clinical trials of MEK inhibitors to overcome IMiD resistance in the BM microenvironment and improve patient outcome in MM.


1997 ◽  
Vol 326 (3) ◽  
pp. 891-895 ◽  
Author(s):  
Ignacio RUBIO ◽  
Pablo RODRIGUEZ-VICIANA ◽  
Julian DOWNWARD ◽  
Reinhard WETZKER

Phosphoinositide 3-kinase γ (PI3Kγ) can be activated in vitro by both α and βγ subunits of heterotrimeric G-proteins and does not interact with p85, the regulatory subunit of PI3Kα. Here we demonstrate the binding of Ras to PI3Kγ in vitro. An N-terminal region of PI3Kγ was identified as a binding site for Ras. After co-expression with PI3Kγ in COS-7 cells, Ras induced only a modest increase in PI3K activity compared with the stimulation of PI3Kα by Ras in the same cells.


2007 ◽  
Vol 35 (2) ◽  
pp. 288-291 ◽  
Author(s):  
A.G. Rossi ◽  
J.M. Hallett ◽  
D.A. Sawatzky ◽  
M.M. Teixeira ◽  
C. Haslett

Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established ‘neutrophil-dominant’ inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3448-3456 ◽  
Author(s):  
Kamal D. Puri ◽  
Teresa A. Doggett ◽  
Jason Douangpanya ◽  
Yonghao Hou ◽  
William T. Tino ◽  
...  

Abstract The phosphoinositide 3-kinase (PI3K) catalytic subunit p110δ is expressed in neutrophils and is thought to play a role in their accumulation at sites of inflammation by contributing to chemoattractant-directed migration. We report here that p110δ is present in endothelial cells and participates in neutrophil trafficking by modulating the proadhesive state of these cells in response to tumor necrosis factor α (TNFα). Specifically, administration of the selective inhibitor of PI3Kδ, IC87114, to animals reduced neutrophil tethering to and increased rolling velocities on cytokine-activated microvessels in a manner similar to that observed in mice deficient in p110δ. These results were confirmed in vitro as inhibition of this isoform in endothelium, but not neutrophils, diminished cell attachment in flow. A role for PI3Kδ in TNFα-induced signaling is demonstrated by a reduction in Akt-phosphorylation and phosphatidylinositol-dependent kinase 1 (PDK1) enzyme activity upon treatment of this cell type with IC87114. p110δ expressed in neutrophils also contributes to trafficking as demonstrated by the impaired movement of these cells across inflamed venules in animals in which this catalytic subunit was blocked or genetically deleted, results corroborated in transwell migration assays. Thus, PI3Kδ may be a reasonable therapeutic target in specific inflammatory conditions as blockade of its activity reduces neutrophil influx into tissues by diminishing their attachment to and migration across vascular endothelium. (Blood. 2004;103:3448-3456)


1999 ◽  
Vol 339 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Jeffrey C. BRYANT ◽  
Ryan S. WESTPHAL ◽  
Brian E. WADZINSKI

Methylation of the C-terminal leucine residue (Leu309) of protein serine/threonine phosphatase 2A catalytic subunit (PP2AC) is known to regulate catalytic activity in vitro, but the functional consequence(s) of this post-translational modification in the context of the cell remain unclear. Alkali-induced demethylation of PP2AC in purified PP2A heterotrimer (ABαC), but not in purified PP2A heterodimer (AC), indicated that a larger fraction of PP2AC is carboxymethylated in ABαC than in AC. To explore the role of Leu309 in PP2A holoenzyme assembly, epitope-tagged PP2A catalytic subunit (HA-PP2A) and a mutant of HA-PP2A containing an alanine residue in place of Leu309 (HA-PP2A-L309A) were transiently expressed in COS cells. Both recombinant proteins exhibited serine/threonine phosphatase activity when immunoisolated from COS cell extracts. HA-PP2A, but not HA-PP2A-L309A, was carboxymethylated in vitro. A chromatographic analysis of cell extracts indicated that most endogenous PP2AC and HA-PP2A were co-eluted with the A and Bα regulatory subunits of PP2A, whereas most HA-PP2A-L309A seemed to elute with the A subunit as a smaller complex or, alternatively, as free catalytic (C) subunit. The A subunit co-immunoisolated with both tagged proteins; however, substantially less Bα subunit co-immunoisolated with HA-PP2A-L309A than with HA-PP2A. These results demonstrate that the reversibly methylated C-terminal leucine residue of PP2AC is important for Bα regulatory subunit binding. Furthermore, the results provide evidence for an interrelationship between PP2AC carboxymethylation and PP2A holoenzyme assembly.


2007 ◽  
Vol 293 (3) ◽  
pp. L686-L692 ◽  
Author(s):  
Kosuke Kato ◽  
Wenju Lu ◽  
Hirofumi Kai ◽  
K. Chul Kim

MUC1 is a membrane-tethered mucin-like glycoprotein expressed on the surface of various mucosal epithelial cells as well as hematopoietic cells. Recently, we showed that MUC1 suppresses flagellin-induced Toll-like receptor (TLR) 5 signaling both in vivo and in vitro through cross talk with TLR5. In this study, we determined whether phosphoinositide 3-kinase (PI3K), a negative regulator of TLR5 signaling, is involved in the cross talk between MUC1 and TLR5 using various genetically modified epithelial cell lines. Our results showed 1) activation of MUC1 induced recruitment of the PI3K regulatory subunit p85 to the MUC1 cytoplasmic tail (CT) as well as Akt phosphorylation, 2) MUC1-induced Akt phosphorylation required the presence of Tyr20 within the PI3K binding motif of the MUC1 CT, and 3) mutation of Tyr20 or pharmacological inhibition of PI3K activation failed to block MUC1-induced suppression of TLR5 signaling. We conclude that whereas PI3K is downstream of MUC1 activation and negatively regulates TLR5 signaling, it is not responsible for MUC1-induced suppression of TLR5 signaling.


1999 ◽  
Vol 189 (11) ◽  
pp. 1839-1845 ◽  
Author(s):  
Zhi-Wei Li ◽  
Wenming Chu ◽  
Yinling Hu ◽  
Mireille Delhase ◽  
Tom Deerinck ◽  
...  

The IκB kinase (IKK) complex is composed of three subunits, IKKα, IKKβ, and IKKγ (NEMO). While IKKα and IKKβ are highly similar catalytic subunits, both capable of IκB phosphorylation in vitro, IKKγ is a regulatory subunit. Previous biochemical and genetic analyses have indicated that despite their similar structures and in vitro kinase activities, IKKα and IKKβ have distinct functions. Surprisingly, disruption of the Ikkα locus did not abolish activation of IKK by proinflammatory stimuli and resulted in only a small decrease in nuclear factor (NF)-κB activation. Now we describe the pathophysiological consequence of disruption of the Ikkβ locus. IKKβ-deficient mice die at mid-gestation from uncontrolled liver apoptosis, a phenotype that is remarkably similar to that of mice deficient in both the RelA (p65) and NF-κB1 (p50/p105) subunits of NF-κB. Accordingly, IKKβ-deficient cells are defective in activation of IKK and NF-κB in response to either tumor necrosis factor α or interleukin 1. Thus IKKβ, but not IKKα, plays the major role in IKK activation and induction of NF-κB activity. In the absence of IKKβ, IKKα is unresponsive to IKK activators.


Sign in / Sign up

Export Citation Format

Share Document