scholarly journals ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment

2021 ◽  
Vol 7 (23) ◽  
pp. eabg2697
Author(s):  
Jiye Liu ◽  
Teru Hideshima ◽  
Lijie Xing ◽  
Su Wang ◽  
Wenrong Zhou ◽  
...  

Immunomodulatory drugs (IMiDs) have markedly improved patient outcome in multiple myeloma (MM); however, resistance to IMiDs commonly underlies relapse of disease. Here, we identify that tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) knockdown (KD)/knockout (KO) in MM cells mediates IMiD resistance via activation of noncanonical nuclear factor κB (NF-κB) and extracellular signal–regulated kinase (ERK) signaling. Within MM bone marrow (BM) stromal cell supernatants, TNF-α induces proteasomal degradation of TRAF2, noncanonical NF-κB, and downstream ERK signaling in MM cells, whereas interleukin-6 directly triggers ERK activation. RNA sequencing of MM patient samples shows nearly universal ERK pathway activation at relapse on lenalidomide maintenance therapy, confirming its clinical relevance. Combination MEK inhibitor treatment restores IMiD sensitivity of TRAF2 KO cells both in vitro and in vivo. Our studies provide the framework for clinical trials of MEK inhibitors to overcome IMiD resistance in the BM microenvironment and improve patient outcome in MM.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Jiye Liu ◽  
Teru Hideshima ◽  
Lijie Xing ◽  
Su Wang ◽  
Daisuke Ogiya ◽  
...  

The development of novel agents including immunomodulatory drugs (IMiDs) lenalidomide (Len) and pomalidomide (Pom) has improved patient outcome in multiple myeloma (MM). Previous studies have shown that IMiDs directly bind cereblon (CRBN), a substrate adaptor of Cullin4 Ring Ligase (CRL4), and activate CRL4CRBN ligase, thereby selectively targeting two B cell transcription factors IKZF1 and IKZF3 for ubiquitylation and proteasomal degradation. We have shown that IMiDs also directly bind and inhibit TP53-regulating kinase activity, resulting in MM cell growth inhibition. Importantly, IMiDs have achieved additive and synergistic anti-MM activity when combined with proteasome inhibitors and monoclonal antibodies in vitro, and are now utilized in combinations to treat newly diagnosed MM. However, development of resistance to IMiDs commonly underlies relapse of disease. To delineate mechanisms of IMiDs resistance, the majority of previous studies have focused on CRBN. Although downregulation or mutations in CRBN can be associated with IMiDs resistance, MM cells can manifest resistance without any CRBN dysfunction, indicating alternative mechanisms of IMiDs resistance. We and others have shown a critical role of the BM microenvironment in MM pathogenesis: secretion of soluble factors from cellular components activates intracellular signaling pathways that promote MM cell migration, proliferation, survival, and drug resistance. To date, however, the mechanisms whether tumor microenvironment mediates IMiDs resistance have not been fully delineated. In our genome-wide CRISPR-Cas9 knockout screening, we have validated that CSN9 signalosome complex regulates sensitivity to IMiDs by modulating CRBN expression. Our screen also identified TRAF2, a member of the TNF receptor associated factor protein family, to regulate IMiDs sensitivity. To confirm modulation of IMiDs sensitivity by TRAF2, we here individually cloned TRAF2 sgRNAs into LentiCRISPRv2 vector, and then re-introduced them into MM cells. As expected, TRAF2-KO MM cells acquired significant resistance to Pom and Len treatment. Importantly, TRAF2 KO showed no effect on CRBN expression; moreover, IMiDs treatment of TRAF2 KO MM cells still triggered IKZF1 and IKZF3 degradation associated with downregulation of IRF4, the main effector of MM cell survival. Importantly, we observed that TRAF2 KO MM cells expressed high levels of p-ERK. We and others have shown that the bone marrow (BM) microenvironment activates ERK signaling pathway and plays a crucial role in drug resistance, and here showed that co-culture of MM cells with BM stromal cells (BMSCs) or culture supernatants (SC-sup) confers resistance to IMiDs, associated with downregulation of TRAF2. These results suggest that IMiDs resistance in the BM microenvironment may be mediated by ERK signaling pathway induced by soluble factors. AZD6244 is a potent and highly selective MEK inhibitor, and we next investigated whether AZD6244 inhibits ERK1/2 activation and overcome IMiDs resistance in TRAF2 KO MM cells. Importantly, addition of AZD6244 overcame resistance to IMiDs in both TRAF2 KO MM cells and SC-sup treated TRAF2 wild-type (WT) cells. In our human MM murine xenograft model, we observed that TRAF2 WT MM cells were sensitive to Pom treatment in vivo, while TRAF2 inducible KD MM cells demonstrated resistance. Importantly, the combination of AZD6244 and Pom significantly reduced growth even of TRAF2 KD MM cells, indicating that MEK inhibitor can inhibit activation of ERK1/2 and overcome IMiDs resistance in vivo. Finally, we confirmed that the number of patient samples with activated ERK pathway was significantly enriched at relapse while on lenalidomide maintenance therapy compared to diagnosis (BIOCARTA ERK pathway analysis 67% vs 39%, respectively, FDR<0.05), implicating ERK activity in clinical resistance to IMiDs. In summary, we have identified and validated TRAF2 as a CRBN-IKZF1/3 axis-independent regulator of BM microenvironment-mediated sensitivity to IMiDs. These studies not only identify a novel mechanism of IMiDs resistance in the tumor microenvironment, but also provide the preclinical rationale for combining inhibitors of MEK/ERK signaling with IMiDs to overcome IMiDs resistance and improve patient outcome. Disclosures Munshi: Legend: Consultancy; Amgen: Consultancy; AbbVie: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy; Adaptive: Consultancy; Janssen: Consultancy; BMS: Consultancy; OncoPep: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; C4: Current equity holder in private company. Richardson:Celgene/BMS, Oncopeptides, Takeda, Karyopharm: Research Funding. Anderson:Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 966-966
Author(s):  
Natalya Lyubynska ◽  
Jennifer Lauchle ◽  
Kevin Shannon ◽  
Benjamin S. Braun

Abstract Abstract 966 Mutations that deregulate cellular signaling are a hallmark of myeloproliferative neoplasms (MPNs), and pharmacologic inhibitors of MPN-associated proteins have redefined therapy for some MPNs. However, this strategy cannot yet be applied to juvenile- and chronic myelomonocytic leukemias (JMML and CMML). These diseases are characterized by aberrant N-Ras, K-Ras, Cbl, and SHP-2 proteins that are not easily targeted by drugs. An attractive alternative approach is to inhibit downstream effector pathways, which include the Raf/MEK/ERK, phosphoinositide-3-OH kinase (PI3K)/Akt, and Ral-GDS/Ral-A cascades. However, it is not known which of these pathways are crucial for the aberrant growth and survival of JMML and CMML cells and might therefore provide the best targets for therapy. To address these questions, we developed an accurate mouse model of JMML and CMML by expressing a conditional “knock-in” KrasLSL-G12D oncogene in bone marrow. We administered PD0325901, a potent and selective MEK inhibitor, to Mx1-Cre, KrasG12D mutant mice to test the hypothesis that the Raf→MEK→ERK cascade is necessary for MPN initiated by KrasG12D expression. Oral administration of PD0325901 5 mg/kg caused deep and durable MEK inhibition in primary bone marrow progenitors. Mx1-Cre, KrasG12D mice with established MPN and wild-type (WT) littermates were randomly assigned to receive PD0325901 5 mg/kg/day or a control vehicle. Treated Mx1-Cre, KrasG12D mice demonstrated rapid correction of leukocytosis and anemia, and reduction in splenomegaly. Treatment was also associated with dramatic improvement in the survival of Mx1-Cre, KrasG12D mice (8.1 vs. 2.0 weeks after entry, p=0.003). Two of three Mx1-Cre, KrasG12D mice that were treated for 12 weeks ultimately died with KrasG12D T-lineage leukemia/lymphoma, but none succumbed with progressive MPN. Flow cytometry of bone marrow and peripheral populations showed that PD0325901 reversed the granulocyte/monocyte progenitor bias and ineffective erythropoiesis in KrasG12D mice. However, PD0325901 did not eliminate the rearranged mutant Kras allele in myeloid progenitors, and these cells remained hypersensitive to GM-CSF in methylcellulose cultures. Therefore, PD0325901 did not eliminate Kras mutant cells, but rather modified their behavior in vivo so as to restore a normal output of the hematopoietic system. To further address the biologic effects of PD0325901 on growth of primary progenitor cells in vitro, we examined colony growth over a range of GM-CSF concentrations. Importantly, whereas in vitro exposure to PD0325901 did not selectively abrogate colony growth from bone marrow of naïve Mx1-Cre, KrasG12D mice in the presence of saturating doses of GM-CSF, a low concentration of PD0325901 eliminated the growth of cytokine-independent progenitor colonies. Even more strikingly, this also restored a normal GM-CSF dose response curve in clonogenic progenitors, eliminating the hypersensitive growth pattern that is a hallmark of MPN. Finally, even at saturating doses of GM-CSF, a low concentration of PD0325901 was sufficient to normalize the numbers and types of cells within the colonies. Together, these data show that a low concentration of PD0325901 is sufficient to impart a normal program of proliferation and differentiation in KrasG12D myeloid progenitors. These findings are highly consistent with the in vivo data. Collectively, our data suggest that aberrant MEK activation mediates most aspects of the MPN phenotype in the progenitor compartment and support the development of clinical trials to evaluate MEK inhibitors in patients with JMML and CMML. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 295 (3) ◽  
pp. F672-F679 ◽  
Author(s):  
Shuang Wang ◽  
Jifu Jiang ◽  
Qiunong Guan ◽  
Hao Wang ◽  
Christopher Y. C. Nguan ◽  
...  

Chronic allograft nephropathy (CAN), the most common cause of late kidney allograft failure, is not effectively prevented by immunosuppressive regimens. Activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) via MEK mediates actions of various growth factors, including transforming growth factor (TGF)-β1, which plays a key role in CAN. Hence, we tested the therapeutic potential of MEK-ERK1/2 signaling disruption to prevent CAN. Kidneys from C57BL/6J (H-2b) mice were transplanted to bilaterally nephrectomized BALB/c (H-2d) mice. At 14 days after transplantation, the recipients were subjected to 28 days of treatment with the MEK inhibitor CI-1040. All six CI-1040-treated allografts survived, while two of seven grafts in the vehicle-treated group were lost. At the end of the experiment, the function and structure of grafts in the CI-1040-treated group were significantly preserved, as indicated by lower levels of serum creatinine or blood urea nitrogen than in the vehicle-treated group [30 ± 6 vs. 94 ± 39 μM creatinine ( P = 0.0015) and 22 ± 8 vs. 56 ± 25 mM BUN ( P = 0.0054)] and reduced CAN in the CI-1040-treated group compared with vehicle controls (CAN score = 4.2 vs. 10.3, P = 0.0119). The beneficial effects induced by CI-1040 were associated with reduction of ERK1/2 phosphorylation and TGFβ1 levels in grafts. Also, CI-1040 potently suppressed not only TGFβ biosynthesis in kidney cell cultures but also antiallograft immune responses in vitro and in vivo. Our data suggest that interference of MEK-ERK1/2 signaling with a pharmacological agent (e.g., CI-1040) has therapeutic potential to prevent CAN in kidney transplantation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinzhu Liu ◽  
Yu Chen ◽  
Bo You ◽  
Yuan Peng ◽  
Yajie Chen ◽  
...  

Abstract Background Gut ischemia and hypoxia post severe burn leads to breakdown of intestinal epithelial barrier and enteric bacterial translocation (EBT), resulting in serious complications, such as systemic inflammatory response syndrome, sepsis and multiple organ failure. Cystic fibrosis transmembrane conductance regulator (CFTR) is known to be downregulated by hypoxia and modulate junctional complexes, which are crucial structures maintaining the intestinal barrier. This study aimed to investigate whether CFTR plays a role in both regulating the intestinal barrier and mediating EBT post severe burn, as well as the signaling pathways involved in these processes. Methods An in vitro Caco-2 cell model subjected to hypoxic injury and an in vivo mouse model with a 30% total body surface area full-thickness dermal burn were established. DF 508 mice (mice with F508del CFTR gene mutation) were used as an in vivo model to further demonstrate the role of CFTR in maintaining normal intestinal barrier function. QRT-PCR, western blot, ELISA, TER assay and immunofluorescence staining were used to detect the expression and localization of CFTR and tight junction proteins, as well as the function of tight junctions. Results Our data indicated that, in Caco-2 cells, the hypoxia condition significantly reduced CFTR expression; activated extracellular signal-regulated kinase and nuclear factor-κB signaling; elevated secretion of inflammatory factors (tumor necrosis factor-α, interleukin-1β and interleukin-8); downregulated zonula occludens-1, occludin and E-cadherin expression; decreased transepithelial electrical resistance values; and led to a cellular mislocation of ZO-1. More importantly, knockdown of CFTR caused similar alterations. The upregulation of inflammatory factors and downregulation of tight junction proteins (ZO-1 and occludin) induced by knockdown of CFTR could be reversed by specific extracellular signal-regulated kinase or nuclear factor-κB inhibition. In support of the in vitro data, exuberant secretion of pro-inflammatory mediators and EBT was observed in the intestine of severely burnt mice in vivo. EBT occurred in DF508 mice (mice with the F508del CFTR gene mutation), accompanied by augmented tumor necrosis factor-α, interleukin-1β and interleukin-8 levels in the ileum compared to wildtype mice. In addition, vitamin D3 was shown to protect the intestinal epithelial barrier from hypoxic injury. Conclusions Collectively, the present study illustrated that CFTR and downstream signaling were critical in modulating the intestinal epithelial junction and EBT post severe burn.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 645 ◽  
Author(s):  
Wisurumuni Karunarathne ◽  
Ilandarage Molagoda ◽  
Sang Park ◽  
Jeong Kim ◽  
Oh-Kyu Lee ◽  
...  

Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.


2017 ◽  
Author(s):  
Jimin Yuan ◽  
Wan Hwa Ng ◽  
Zizi Tian ◽  
Jiajun Yap ◽  
Manuela Baccarini ◽  
...  

SummaryHyperactive RAS/RAF/MEK/ERK signaling has a well-defined role in cancer biology. Aberrant pathway activation occurs mostly upstream of MEK; however, MEK mutations are prevalent in some cancer subsets. Here we show that cancer-related MEK mutants can be classified as those activated by relieving the inhibitory role of helix A, and those with in-frame deletions of β3-αC loop, which exhibit differential resistance to MEK inhibitors in vitro and in vivo. The β3-αC loop deletions activate MEK1 through enhancing homodimerization that can drive intradimer cross-phosphorylation of activation loop. Further, we demonstrate that MEK1 dimerization is required both for its activation by RAF and for its catalytic activity towards ERK. Our study identifies a novel group of MEK mutants, illustrates some key steps in RAF/MEK/ERK activation, and has important implications for the design of therapies targeting hyperactive RAS/RAF/MEK/ERK signaling in cancers.


Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1656-1663 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Mariateresa Fulciniti ◽  
Teru Hideshima ◽  
Weihua Song ◽  
Merav Leiba ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase1/2 (ERK1/2) signaling cascade mediates human multiple myeloma (MM) growth and survival triggered by cytokines and adhesion to bone marrow stromal cells (BMSCs). Here, we examined the effect of AZD6244 (ARRY-142886), a novel and specific MEK1/2 inhibitor, on human MM cell growth in the bone marrow (BM) milieu. AZD6244 blocks constitutive and cytokine-stimulated ERK1/2 phosphorylation and inhibits proliferation and survival of human MM cell lines and patient MM cells, regardless of sensitivity to conventional chemotherapy. Importantly, AZD6244 (200 nM) induces apoptosis in patient MM cells, even in the presence of exogenous interleukin-6 or BMSCs associated with triggering of caspase 3 activity. AZD6244 sensitizes MM cells to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. AZD6244 down-regulates the expression/secretion of osteoclast (OC)–activating factors from MM cells and inhibits in vitro differentiation of MM patient PBMCs to OCs induced by ligand for receptor activator of NF-κB (RANKL) and macrophage-colony stimulating factor (M-CSF). Finally, AZD6244 inhibits tumor growth and prolongs survival in vivo in a human plasmacytoma xenograft model. Taken together, these results show that AZD6244 targets both MM cells and OCs in the BM microenvironment, providing the preclinical framework for clinical trials to improve patient outcome in MM.


2018 ◽  
Vol 11 (554) ◽  
pp. eaar6795 ◽  
Author(s):  
Jimin Yuan ◽  
Wan Hwa Ng ◽  
Zizi Tian ◽  
Jiajun Yap ◽  
Manuela Baccarini ◽  
...  

RAS-RAF-MEK-ERK signaling has a well-defined role in cancer biology. Although aberrant pathway activation occurs mostly upstream of the kinase MEK, mutations in MEK are prevalent in some cancer subsets. Here, we found that cancer-related, activating mutations in MEK can be classified into two groups: those that relieve inhibitory interactions with the helix A region and those that are in-frame deletions of the β3-αC loop, which enhance MEK1 homodimerization. The former, helix A–associated mutants, are inhibited by traditional MEK inhibitors. However, we found that the increased homodimerization associated with the loop-deletion mutants promoted intradimer cross-phosphorylation of the activation loop and conferred differential resistance to MEK inhibitors both in vitro and in vivo. MEK1 dimerization was required both for its activation by the kinase RAF and for its catalytic activity toward the kinase ERK. Our findings not only identify a previously unknown group of MEK mutants and provide insight into some key steps in RAF-MEK-ERK activation but also have implications for the design of therapies targeting RAS-ERK signaling in cancers.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 970-970
Author(s):  
Qian Sun ◽  
Chiara Borga ◽  
Geertruy te Kronnie ◽  
Klaus-Michael Debatin ◽  
Lüder Hinrich Meyer

Abstract Acute lymphoblastic leukemia (ALL) is the most frequent malignant disorder in children and adolescents. Despite successful treatment, relapse of the disease remains a major problem and is associated with poor prognosis. This emphasizes the need for novel treatment strategies to be applied in addition to established chemotherapy regimens without increasing general toxicity. Previously, we described a strong association of leukemia cell engraftment of primary patient B cell precursor (BCP) ALL samples transplanted in a NOD/SCID/huALL mouse model and patient outcome. Rapid onset of leukemia related morbidity (time to leukemia, TTLshort) is indicative for patient relapse and characterized by a specific gene expression profile. Among the top differentially regulated genes, the gene coding for CD70 was identified to be significantly up-regulated in TTLshort/high risk ALL. CD70 is a member of the tumor necrosis factor (TNF) family expressed on activated B- and T-lymphocytes and dendritic cells. Binding of CD70 to its receptor CD27 is involved in regulation of T- and B-cells including priming and generation of memory and plasma cells. CD70 has been described to be constitutively expressed on different cancers including hematological malignancies. However, expression and targeting of CD70 in B- cell precursor lymphoblastic leukemia has so far not been investigated. In this study, we addressed expression of CD70 in patient-derived primograft leukemia samples and primary patient specimens obtained at diagnosis from pediatric patients. Furthermore, we evaluated CD70 as a therapeutic target for directed immunotherapy in vitro and in our BCP-ALL xenograft system in vivo. Flow cytometric analyses of CD70 surface expression in all together 19 patient-derived xenograft samples (TTLshort n= 7, TTLlong n=12) revealed a higher expression of CD70 on ALL cells with a TTLshort/early relapse phenotype compared to TTLlongsamples. We also investigated expression of the CD70 receptor CD27 and found no significant difference in surface expression between both TTL subgroups. Moreover, we investigated the transcript expression levels of 198 BCP-ALL specimens obtained at diagnosis. Interestingly, we found a heterogenous expression of CD70 with no association to cytogenetic subgroups, minimal residual disease (MRD) risk classes or patient outcome. Importantly, a significant higher CD70 expression was found in leukemia samples compared to healthy bone marrow controls indicating a general over-expression in BCP-ALL. CD27 however, did not show different transcript expression including healthy bone marrow controls. To take advantage of increased CD70 expression in BCP-ALL, we addressed CD70 as therapeutic target for immunotherapy. Co-culture in vitro experiments of primograft ALL cells with NK cells in the presence of specific anti-CD70 antibodies revealed five-fold increased antibody-dependent cell-mediated cytotoxicity (ADCC) as compared to the respective isotype control. To evaluate the efficacy of CD70 directed immunotherapy, we assessed leukemia development in NOD/SCID mice upon transplantation of primograft ALL with high CD70 expression either incubated with anti-CD70 antibody or the respective isotype control. Most importantly, a marked reduction of leukemia load in peripheral blood, bone marrow and spleens of the animals was detected in anti-CD70 treated cases. This indicates, that CD70 provides an immunotherapeutic target on ALL cells inducing ADCC by NK cells present in NOD/SCID mice. Most interestingly, this effect could be abrogated both by NK-cell depletion (pre-treatment with anti-mouse CD122 antibodies) in the recipient animals and by using NK-cell deprived NSG mice as recipients, confirming that decreased in vivo leukemia growth upon anti-CD70 treatment is mediated by NK-cell induced cytotoxicity of anti-CD70 bearing CD70 positive ALL cells. Taken together, we identified significantly up-regulated CD70 expression in BCP-ALL with varying expression among molecular and prognostic subgroups. BCP-ALL samples with high surface expression of CD70, as detected by flowcytometry, can be targeted by directed immunotherapy with anti-CD70 antibodies leading to efficient NK-cell dependent lysis of leukemia cells in vitro and decreased growth in an in vivo BCP-ALL model. Thus, CD70 provides a novel target for directed immunotherapy of BCP-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4470-4476 ◽  
Author(s):  
Makoto Hamasaki ◽  
Teru Hideshima ◽  
Pierfrancesco Tassone ◽  
Paola Neri ◽  
Kenji Ishitsuka ◽  
...  

Abstract Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine; trade name, Atiprimod) is an orally bioavailable cationic amphiphilic compound that significantly inhibits production of interleukin 6 (IL-6) and inflammation in rat arthritis and autoimmune animal models. We here characterize the effect of atiprimod on human multiple myeloma (MM) cells. Azaspirane significantly inhibited growth and induced caspase-mediated apoptosis in drug-sensitive and drug-resistant MM cell lines, as well as patient MM cells. IL-6, insulin-like growth factor 1 (IGF-1), or adherence of MM cells to bone marrow stromal cells (BMSCs) did not protect against atiprimod-induced apoptosis. Both conventional (dexamethasone, doxorubicin, melphalan) and novel (arsenic trioxide) agents augment apoptosis induced by atiprimod. Azaspirane inhibits signal transducer activator of transcription 3 (STAT3) and a PI3-K (phosphatidylinositol 3-kinase) target (Akt), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2), inhibits phosphorylation triggered by IL-6, and also inhibits inhibitorκBα (IκBα) and nuclear factor κB (NFκB) p65 phosphorylation triggered by tumor necrosis factor α (TNF-α). Of importance, azaspirane inhibits both IL-6 and vascular endothelial growth factor (VEGF) secretion in BMSCs triggered by MM cell binding and also inhibits angiogenesis on human umbilical vein cells (HUVECs). Finally, azaspirane demonstrates in vivo antitumor activity against human MM cell growth in severe combined immunodeficient (SCID) mice. These results, therefore, show that azaspirane both induces MM cell apoptosis and inhibits cytokine secretion in the BM milieu, providing the framework for clinical trials to improve patient outcome in MM.


Sign in / Sign up

Export Citation Format

Share Document