Disruption of ubiquitin-mediated processes in diseases of the brain and bone

2008 ◽  
Vol 36 (3) ◽  
pp. 469-471 ◽  
Author(s):  
Robert Layfield ◽  
Mark S. Searle

A role for ubiquitin in the pathogenesis of human diseases was first suggested some two decades ago, from studies that localized the protein to intracellular protein aggregates, which are a feature of the major human neurodegenerative disorders. Although several different mechanisms have been proposed to connect impairment of the UPS (ubiquitin–proteasome system) to the presence of these ‘ubiquitin inclusions’ within diseased neurones, their significance in the disease process remains to be fully clarified. Ubiquitin inclusions also contain ubiquitin-binding proteins, such as the p62 protein [also known as SQSTM1 (sequestosome 1)], which non-covalently interacts with the ubiquitinated protein aggregates and may serve to mediate their autophagic clearance. p62 is a multifunctional protein and, in the context of bone-resorbing osteoclasts, is an important scaffold in the RANK [receptor activator of NF-κB (nuclear factor κB)]–NF-κB signalling pathway. Further, mutations affecting the UBA domain (ubiquitin-associated domain) of p62 are commonly found in patients with the skeletal disorder PDB (Paget's disease of bone). These mutations impair the ability of p62 to bind to ubiquitin and result in disordered osteoclast NF-κB signalling that may underlie the disease aetiology. Recent structural insights into the unusual mechanism of ubiquitin recognition by the p62 UBA domain have helped rationalize the mechanisms by which different PDB mutations exert their negative effects on ubiquitin binding by p62, as well as providing an indication of the ubiquitin-binding selectivity of p62 and, by extension, its normal biological functions.

2021 ◽  
Author(s):  
Jianhui Li ◽  
Mark Hochstrasser

The proteasome is central to proteolysis by the ubiquitin-proteasome system under normal growth conditions but is itself degraded through macroautophagy under nutrient stress. A recently described AMPK (AMP-activated protein kinase)-regulated ESCRT (endosomal sorting complex required for transport)-dependent microautophagy pathway also regulates proteasome trafficking and degradation in low glucose conditions in yeast. Aberrant proteasomes are more prone to microautophagy, suggesting the ESCRT system fine-tunes proteasome quality control under low glucose stress. Here we uncover additional features of the selective microautophagy of proteasomes. Genetic or pharmacological induction of aberrant proteasomes is associated with increased mono- or oligo-ubiquitylation of proteasome components, which appear to be recognized by ESCRT-0. AMPK controls this pathway in part by regulating the trafficking of ESCRT-0 to the vacuole surface, which also leads to degradation of the Vps27 subunit of ESCRT-0. The Rsp5 ubiquitin ligase contributes to proteasome subunit ubiquitylation, and multiple ubiquitin-binding elements in Vps27 are involved in their recognition. We propose that ESCRT-0 at the vacuole surface recognizes ubiquitylated proteasomes and initiates their microautophagic elimination during glucose depletion.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2215-2227 ◽  
Author(s):  
Yoshikuni Mizuno ◽  
Nobutaka Hattori ◽  
Shin-ichiro Kubo ◽  
Shigeto Sato ◽  
Kenya Nishioka ◽  
...  

Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1 -linked PD due to α - synuclein ( SNCA ) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of α-synuclein. In PARK1 -linked PD, mutant α-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin–proteasome system and autophagy–lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.


2019 ◽  
Author(s):  
Shireen A. Sarraf ◽  
Hetal V. Shah ◽  
Gil Kanfer ◽  
Michael E. Ward ◽  
Richard J. Youle

AbstractMisfolded protein aggregates can disrupt cellular homeostasis and cause toxicity, a hallmark of numerous neurodegenerative diseases. Protein quality control by the ubiquitin proteasome system (UPS) and autophagy is vital for clearance of aggregates and maintenance of cellular homeostasis1. Autophagy receptor proteins bridge the interaction between ubiquitinated proteins and the autophagy machinery allowing selective elimination of cargo2. Aggrephagy is critical to protein quality control, but how aggregates are recognized and targeted for degradation is not well understood. Here we examine the requirements for 5 autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in proteotoxic stress-induced aggregate clearance. Endogenous TAX1BP1 is both recruited to and required for the clearance of stress-induced aggregates while overexpression of TAX1BP1 increases aggregate clearance through autophagy. Furthermore, TAX1BP1 depletion sensitizes cells to proteotoxic stress and Huntington’s disease-linked polyQ proteins, whereas TAX1BP1 overexpression clears cells of polyQ protein aggregates by autophagy. We propose a broad role for TAX1BP1 in the clearance of cytotoxic proteins, thus identifying a new mode of clearance of protein inclusions.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2022 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Katsutoshi Taguchi ◽  
Masaki Tanaka

Ubiquitin signals play various roles in proteolytic and non-proteolytic functions. Ubiquitin signals are recognized as targets of the ubiquitin–proteasome system and the autophagy–lysosome pathway. In autophagy, ubiquitin signals are required for selective incorporation of cargoes, such as proteins, organelles, and microbial invaders, into autophagosomes. Autophagy receptors possessing an LC3-binding domain and a ubiquitin binding domain are involved in this process. Autophagy activity can decline as a result of genetic variation, aging, or lifestyle, resulting in the onset of various neurodegenerative diseases. This review summarizes the selective autophagy of neurodegenerative disease-associated protein aggregates via autophagy receptors and discusses its therapeutic application for neurodegenerative diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mónika Lippai ◽  
Péter Lőw

The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2450
Author(s):  
Won-Hee Song ◽  
Dalen Zuidema ◽  
Young-Joo Yi ◽  
Michal Zigo ◽  
Zhibing Zhang ◽  
...  

Propagation of paternal sperm-contributed mitochondrial genes, resulting in heteroplasmy, is seldom observed in mammals due to post-fertilization degradation of sperm mitochondria, referred to as sperm mitophagy. Whole organelle sperm mitochondrion degradation is thought to be mediated by the interplay between the ubiquitin-proteasome system (UPS) and the autophagic pathway (Song et al., Proc. Natl. Acad. Sci. USA, 2016). Both porcine and primate post-fertilization sperm mitophagy rely on the ubiquitin-binding autophagy receptor, sequestosome 1 (SQSTM1), and the proteasome-interacting ubiquitinated protein dislocase, valosin-containing protein (VCP). Consequently, we anticipated that sperm mitophagy could be reconstituted in a cell-free system consisting of permeabilized mammalian spermatozoa co-incubated with porcine oocyte extracts. We found that SQSTM1 was detected in the midpiece/mitochondrial sheath of the sperm tail after, but not before, co-incubation with oocyte extracts. VCP was prominent in the sperm mitochondrial sheath both before and after the extract co-incubation and was also detected in the acrosome and postacrosomal sheath and the subacrosomal layer of the spermatozoa co-incubated with extraction buffer as control. Such patterns are consistent with our previous observation of SQSTM1 and VCP associating with sperm mitochondria inside the porcine zygote. In addition, it was observed that sperm head expansion mimicked the early stages of paternal pronucleus development in a zygote during prolonged sperm-oocyte extract co-incubation. Treatment with anti-SQSTM1 antibody during extract co-incubation prevented ooplasmic SQSTM1 binding to sperm mitochondria. Even in an interspecific cellular environment encompassing bull spermatozoa and porcine oocyte extract, ooplasmic SQSTM1 was recruited to heterospecific sperm mitochondria. Complementary with the binding of SQSTM1 and VCP to sperm mitochondria, two sperm-borne pro-mitophagy proteins, parkin co-regulated gene product (PACRG) and spermatogenesis associated 18 (SPATA18), underwent localization changes after extract coincubation, which were consistent with their degradation observed inside fertilized porcine oocytes. These results demonstrate that the early developmental events of post-fertilization sperm mitophagy observed in porcine zygote can be reconstituted in a cell-free system, which could become a useful tool for identifying additional molecules that regulate mitochondrial inheritance in mammals


2012 ◽  
Vol 24 (3) ◽  
pp. 166-171
Author(s):  
Anne M. Landau ◽  
Rosmarie Siegrist-Johnstone ◽  
Julie Desbarats

Objective: Fas (CD95), commonly categorised as a death receptor due to its well-defined role in apoptosis, can paradoxically also promote neuroprotection. We have previously found that defects in Fas signalling render mice highly susceptible to neural degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease (PD). Decreased activity of the ubiquitin proteasome system and accumulation of protein aggregates are implicated in PD pathogenesis. Here, we investigate the relationship between Fas and ubiquitin proteasomal activity in neuronal cells.Methods: We performed proteasome assays in neuroblastoma cells and in midbrain cultures of wild-type and Fas-deficient mice.Results: Neuroblastoma cells upregulated proteasomal activity in response to an activating Fas antibody in vitro. Furthermore, neural tissue from Fas-deficient mice showed decreased proteasomal activity compared with the tissue from wild-type mice when exposed to a PD-inducing toxin in vivo.Conclusion: These findings suggest that mechanisms for Fas-mediated neuroprotection may include Fas-induced upregulation of proteasomal activity, and consequently less accumulation of toxic protein aggregates.


2019 ◽  
Vol 29 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Rosellina Guarascio ◽  
Dervis Salih ◽  
Marina Yasvoina ◽  
Frances A Edwards ◽  
Michael E Cheetham ◽  
...  

Abstract Negative regulator of ubiquitin-like protein 1 (NUB1) and its longer isoform NUB1L are ubiquitin-like (UBL)/ubiquitin-associated (UBA) proteins that facilitate the targeting of proteasomal substrates, including tau, synphilin-1 and huntingtin. Previous data revealed that NUB1 also mediated a reduction in tau phosphorylation and aggregation following proteasome inhibition, suggesting a switch in NUB1 function from targeted proteasomal degradation to a role in autophagy. Here, we delineate the mechanisms of this switch and show that NUB1 interacted specifically with p62 and induced an increase in p62 levels in a manner facilitated by inhibition of the proteasome. NUB1 moreover increased autophagosomes and the recruitment of lysosomes to aggresomes following proteasome inhibition. Autophagy flux assays revealed that NUB1 affected the autophagy–lysosomal pathway primarily via the UBA domain. NUB1 localized to cytosolic inclusions with pathological forms of tau, as well as LAMP1 and p62 in the hippocampal neurons of tauopathy mice. Finally, NUB1 facilitated the extracellular release of tau following proteasome inhibition. This study thus shows that NUB1 plays a role in regulating the autophagy–lysosomal pathway when the ubiquitin proteasome system is compromised, thus contributing to the mechanisms targeting the removal of aggregation-prone proteins upon proteasomal impairment.


2020 ◽  
Vol 25 (4) ◽  
pp. 350-360
Author(s):  
Favour A. Akinjiyan ◽  
Aleem Fazal ◽  
Marc Hild ◽  
Rohan E. J. Beckwith ◽  
Nathan T. Ross ◽  
...  

Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery. Conventional approaches for studying ubiquitination either have high protein requirements or rely on exogenous or modified ubiquitin moieties, thus limiting their utility. In order to circumvent these issues, we developed a high-throughput live-cell assay that combines the NanoBiT luminescence-based technology with tandem ubiquitin binding entities (TUBEs) to resolve substrate ubiquitination. To demonstrate the effectiveness and utility of this assay, we studied compound-induced ubiquitination of the G to S Phase Transition 1 (GSPT1) protein. Using this assay, we characterized compounds with varying levels of GSPT1 ubiquitination activity. This method provides a live-cell-based approach for assaying substrate ubiquitination that can be adapted to study the kinetics of ubiquitin transfer onto a substrate protein of interest. In addition, our results show that this approach is portable for studying the ubiquitination of target proteins with diverse functions.


Sign in / Sign up

Export Citation Format

Share Document