Lamin A-linked progerias: is farnesylation the be all and end all?

2010 ◽  
Vol 38 (1) ◽  
pp. 281-286 ◽  
Author(s):  
Dawn T. Smallwood ◽  
Sue Shackleton

HGPS (Hutchinson–Gilford progeria syndrome) is a severe childhood disorder that appears to mimic an accelerated aging process. The disease is most commonly caused by gene mutations that disrupt the normal post-translational processing of lamin A, a structural component of the nuclear envelope. Impaired processing results in aberrant retention of a farnesyl group at the C-terminus of lamin A, leading to altered membrane dynamics. It has been widely proposed that persistence of the farnesyl moiety is the major factor responsible for the disease, prompting clinical trials of farnesyltransferase inhibitors to prevent lamin A farnesylation in children afflicted with HGPS. Although there is evidence implicating farnesylation in causing some of the cellular defects of HGPS, results of several recent studies suggest that aberrant lamin A farnesylation is not the only determinant of the disease. These findings have important implications for the design of treatments for this devastating disease.

2021 ◽  
Vol 22 (14) ◽  
pp. 7327
Author(s):  
Juan A. Fafián-Labora ◽  
Miriam Morente-López ◽  
Fco. Javier de Toro ◽  
María C. Arufe

Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.


2008 ◽  
Vol 36 (6) ◽  
pp. 1389-1392 ◽  
Author(s):  
Gemma S. Beard ◽  
Joanna M. Bridger ◽  
Ian R. Kill ◽  
David R.P. Tree

The laminopathy Hutchinson–Gilford progeria syndrome (HGPS) is caused by the mutant lamin A protein progerin and leads to premature aging of affected children. Despite numerous cell biological and biochemical insights into the basis for the cellular abnormalities seen in HGPS, the mechanism linking progerin to the organismal phenotype is not fully understood. To begin to address the mechanism behind HGPS using Drosophila melanogaster, we have ectopically expressed progerin and lamin A. We found that ectopic progerin and lamin A phenocopy several effects of laminopathies in developing and adult Drosophila, but that progerin causes a stronger phenotype than wild-type lamin A.


2009 ◽  
Vol 9 ◽  
pp. 1449-1462 ◽  
Author(s):  
Baomin Li ◽  
Sonali Jog ◽  
Jose Candelario ◽  
Sita Reddy ◽  
Lucio Comai

Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), and highlight functional connections to cellular processes that may contribute to normal aging.


2010 ◽  
Vol 38 (1) ◽  
pp. 287-291 ◽  
Author(s):  
Ishita S. Mehta ◽  
Joanna M. Bridger ◽  
Ian R. Kill

HGPS (Hutchinson–Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.


2021 ◽  
Vol 13 (575) ◽  
pp. eabd2655
Author(s):  
Wei Wang ◽  
Yuxuan Zheng ◽  
Shuhui Sun ◽  
Wei Li ◽  
Moshi Song ◽  
...  

Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9–based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24−/− mice that exhibit a premature aging phenotype. CRISPR-Cas9–based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.


2019 ◽  
Vol 30 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Nickolay K. Isaev ◽  
Elena V. Stelmashook ◽  
Elisaveta E. Genrikhs

AbstractHuman aging affects the entire organism, but aging of the brain must undoubtedly be different from that of all other organs, as neurons are highly differentiated postmitotic cells, for the majority of which the lifespan in the postnatal period is equal to the lifespan of the entire organism. In this work, we examine the distinctive features of brain aging and neurogenesis during normal aging, pathological aging (Alzheimer’s disease), and accelerated aging (Hutchinson-Gilford progeria syndrome and Werner syndrome).


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S424-S424
Author(s):  
Diana L Leung ◽  
Zuyun Liu ◽  
Morgan E Levine

Abstract Investigation into the hallmarks of aging point to the existence of shared mechanisms that underlie the biological aging process. While there is a general consensus that hallmarks of aging rarely occur in isolation, little is known in regards to their overlapping networks or how interactions contribute to manifestations at the clinical level. Here, we examine whether shared epigenetic alterations—one of the proposed hallmark of aging—underlies diverse conditions characterized by other hallmarks, including cellular senescence, loss of proteostasis, genomic instability, mitochondrial dysfunction, and inflammation. Using weighted network analysis, we identified consistent overlaps in the methylation profiles across the different traits. For instance, epigenetic modules that were distinct in senescence were also affected in progeroid syndromes (Hutchinson-Gilford Progeria Syndrome and Werner’s Syndrome) and smokers. These CpGs tended to be located in CpG islands, which are notable for their strong association with transcriptional regulation. Overall, our results suggest that epigenetic alterations intersect with various hallmarks of aging. In moving forward, incorporation of this understanding may lead to the development of biomarkers that better capture the biological (rather than chronological) aging process.


2014 ◽  
Vol 25 (8) ◽  
pp. 1202-1215 ◽  
Author(s):  
Sutirtha Datta ◽  
Chelsi J. Snow ◽  
Bryce M. Paschal

Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson–Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre–lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.


Sign in / Sign up

Export Citation Format

Share Document