Centrosomes and mitotic spindle poles: a recent liaison?

2015 ◽  
Vol 43 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Pavithra L. Chavali ◽  
Isabel Peset ◽  
Fanni Gergely

Centrosomes comprise two cylindrical centrioles embedded in the pericentriolar material (PCM). The PCM is an ordered assembly of large scaffolding molecules, providing an interaction platform for proteins involved in signalling, trafficking and most importantly microtubule nucleation and organization. In mitotic cells, centrosomes are located at the spindle poles, sites where spindle microtubules converge. However, certain cell types and organisms lack centrosomes, yet contain focused spindle poles, highlighting that despite their juxtaposition in cells, centrosomes and mitotic spindle poles are distinct physical entities. In the present paper, we discuss the origin of centrosomes and summarize their contribution to mitotic spindle assembly and cell division. We then describe the key molecular players that mediate centrosome attachment to mitotic spindle poles and explore why co-segregation of centrosomes and spindle poles into daughter cells is of potential benefit to organisms.

2020 ◽  
Author(s):  
Ivan Ramirez ◽  
Ankur A. Gholkar ◽  
Erick F. Velasquez ◽  
Xiao Guo ◽  
Jorge Z. Torres

ABSTRACTMyosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane, while myosin MYO2 functions in actomyosin ring contraction to promote cytokinesis. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. Myl5 localized to the mitotic spindle poles and spindle microtubules during early mitosis, an area overlapping with MYO10 localization. Depletion of Myl5 led to defects in chromosome congression and to a slower progression through mitosis. We propose that Myl5 is a novel myosin RLC that is important for cell division.


2014 ◽  
Vol 25 (25) ◽  
pp. 4034-4048 ◽  
Author(s):  
Natalie J. Nannas ◽  
Eileen T. O’Toole ◽  
Mark Winey ◽  
Andrew W. Murray

The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Kimberly K. Fong ◽  
Trisha N. Davis ◽  
Charles L. Asbury

To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


1990 ◽  
Vol 97 (2) ◽  
pp. 259-271
Author(s):  
B. Buendia ◽  
C. Antony ◽  
F. Verde ◽  
M. Bornens ◽  
E. Karsenti

A monoclonal antibody (CTR2611) raised against centrosomes isolated from human lymphocytes (KE37) stains the pericentriolar material and intermediate filaments in the same cells. In MDCK cells, where most of the microtubules do not originate from the pericentriolar region during interphase, the antigen is distributed along intermediate filaments. At the onset of mitosis, a large fraction of the CTR2611 antigen associates with the minus-end domain of the microtubules of the mitotic spindle but not with the pericentriolar region itself. Treatment of mitotic MDCK cells with taxol leads to the assembly of many microtubule asters in the cytoplasm at the expense of the mitotic spindle. The CTR2611 antigen is present in the center of each of these asters. Similar asters can also be produced in vitro by adding taxol to concentrated Xenopus egg mitotic cytoplasm. Again, the antigen is found close to the center of the asters. These results suggest that CTR2611 antigen is associated with a material involved in microtubule nucleation or microtubule minus-end stabilization. The monoclonal antibody recognizes a 74 × 10(3) Mr polypeptide and other polypeptides at 120 × 10(3) Mr and 170 × 10(3) Mr. The 74 × 10(3) Mr polypeptide is found in all species examined so far, suggesting that it contains a highly conserved epitope.


2010 ◽  
Vol 188 (1) ◽  
pp. 7-9
Author(s):  
Ramsey A. Saleem ◽  
John D. Aitchison

Cell division depends critically on the temporally controlled assembly of mitotic spindles, which are responsible for the distribution of duplicated chromosomes to each of the two daughter cells. To gain insight into the process, Vizeacoumar et al., in this issue (Vizeacoumar et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909013), have combined systems genetics with high-throughput and high-content imaging to comprehensively identify and classify novel components that contribute to the morphology and function of the mitotic spindle.


1976 ◽  
Vol 54 (9) ◽  
pp. 995-1009 ◽  
Author(s):  
D. E. Harder

Before mitosis in intercellular Puccinia graminis f. sp. avenae, P. coronata f. sp. avenue, and axenic P. graminis f. sp. tritici and P. coronata, the nuclei were reduced in size by nucleolar extrusion and (or) partitioning of variable portions of the nucleus. Also there was increased vesiculation in the cytoplasm with a corresponding increase in lipid and carbohydrate storage material.The mitotic spindle first formed in one corner of the nucleus, then elongated until the spindle poles were oriented at either end of the nucleus. During the intermediate stages of mitosis the chromatin was arranged around the periphery of the spindle, which consisted mostly of chromosomal fibres. In the later stages the nucleus elongated and became dumbbell-shaped, with long straight fibres passing through the nucleus from pole to pole. The end of mitosis was marked by the chromatin assuming a ‘two-track’ configuration at the poles on either side of the intranuclear fibres and by the breakdown of the nuclear envelope in the constricted region of the dumbbell-shaped nucleus.After the daughter nuclei had separated, they migrated into new hyphal branches and septum synthesis was subsequently initiated. The septa grew by centripetal invagination in both the intercellular and the axenic hyphal states. There were often accumulations of mitochondria in the region of septal growth. Mature septa of intercellular P. coronata and axenic P. coronata and P. graminis tritici were typical of those found elsewhere in the rust fungi.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benoit G Godard ◽  
Remi Dumollard ◽  
Carl-Philipp Heisenberg ◽  
Alex McDougall

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).


Sign in / Sign up

Export Citation Format

Share Document