scholarly journals The myosin regulatory light chain Myl5 localizes to mitotic spindle poles and is required for proper cell division

2020 ◽  
Author(s):  
Ivan Ramirez ◽  
Ankur A. Gholkar ◽  
Erick F. Velasquez ◽  
Xiao Guo ◽  
Jorge Z. Torres

ABSTRACTMyosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane, while myosin MYO2 functions in actomyosin ring contraction to promote cytokinesis. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. Myl5 localized to the mitotic spindle poles and spindle microtubules during early mitosis, an area overlapping with MYO10 localization. Depletion of Myl5 led to defects in chromosome congression and to a slower progression through mitosis. We propose that Myl5 is a novel myosin RLC that is important for cell division.

Endocrinology ◽  
2019 ◽  
Vol 160 (8) ◽  
pp. 1926-1936
Author(s):  
Mark P Sawicki ◽  
Ankur A Gholkar ◽  
Jorge Z Torres

Abstract Menin is the protein mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome and their corresponding sporadic tumor counterparts. We have found that menin functions in promoting proper cell division. Here, we show that menin localizes to the mitotic spindle poles and the mitotic spindle during early mitosis and to the intercellular bridge microtubules during cytokinesis in HeLa cells. In our study, menin depletion led to defects in spindle assembly and chromosome congression during early mitosis, lagging chromosomes during anaphase, defective cytokinesis, multinucleated interphase cells, and cell death. In addition, pharmacological inhibition of the menin-MLL1 interaction also led to similar cell division defects. These results indicate that menin and the menin-MLL1 interaction are important for proper cell division. These results highlight a function for menin in cell division and aid our understanding of how mutation and misregulation of menin promotes tumorigenesis.


2015 ◽  
Vol 43 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Pavithra L. Chavali ◽  
Isabel Peset ◽  
Fanni Gergely

Centrosomes comprise two cylindrical centrioles embedded in the pericentriolar material (PCM). The PCM is an ordered assembly of large scaffolding molecules, providing an interaction platform for proteins involved in signalling, trafficking and most importantly microtubule nucleation and organization. In mitotic cells, centrosomes are located at the spindle poles, sites where spindle microtubules converge. However, certain cell types and organisms lack centrosomes, yet contain focused spindle poles, highlighting that despite their juxtaposition in cells, centrosomes and mitotic spindle poles are distinct physical entities. In the present paper, we discuss the origin of centrosomes and summarize their contribution to mitotic spindle assembly and cell division. We then describe the key molecular players that mediate centrosome attachment to mitotic spindle poles and explore why co-segregation of centrosomes and spindle poles into daughter cells is of potential benefit to organisms.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alexander JR Booth ◽  
Zuojun Yue ◽  
John K Eykelenboom ◽  
Tom Stiff ◽  
GW Gant Luxton ◽  
...  

To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus, we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome–spindle interactions.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Kimberly K. Fong ◽  
Trisha N. Davis ◽  
Charles L. Asbury

To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.


2015 ◽  
Vol 209 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Laura O’Regan ◽  
Josephina Sampson ◽  
Mark W. Richards ◽  
Axel Knebel ◽  
Daniel Roth ◽  
...  

Hsp70 proteins represent a family of chaperones that regulate cellular homeostasis and are required for cancer cell survival. However, their function and regulation in mitosis remain unknown. In this paper, we show that the major inducible cytoplasmic Hsp70 isoform, Hsp72, is required for assembly of a robust bipolar spindle capable of efficient chromosome congression. Mechanistically, Hsp72 associates with the K-fiber–stabilizing proteins, ch-TOG and TACC3, and promotes their interaction with each other and recruitment to spindle microtubules (MTs). Targeting of Hsp72 to the mitotic spindle is dependent on phosphorylation at Thr-66 within its nucleotide-binding domain by the Nek6 kinase. Phosphorylated Hsp72 concentrates on spindle poles and sites of MT–kinetochore attachment. A phosphomimetic Hsp72 mutant rescued defects in K-fiber assembly, ch-TOG/TACC3 recruitment and mitotic progression that also resulted from Nek6 depletion. We therefore propose that Nek6 facilitates association of Hsp72 with the mitotic spindle, where it promotes stable K-fiber assembly through recruitment of the ch-TOG–TACC3 complex.


2021 ◽  
Vol 118 (34) ◽  
pp. e2108145118
Author(s):  
Anja Bufe ◽  
Ana García del Arco ◽  
Magdalena Hennecke ◽  
Anchel de Jaime-Soguero ◽  
Matthias Ostermaier ◽  
...  

Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin–independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.


1976 ◽  
Vol 54 (9) ◽  
pp. 995-1009 ◽  
Author(s):  
D. E. Harder

Before mitosis in intercellular Puccinia graminis f. sp. avenae, P. coronata f. sp. avenue, and axenic P. graminis f. sp. tritici and P. coronata, the nuclei were reduced in size by nucleolar extrusion and (or) partitioning of variable portions of the nucleus. Also there was increased vesiculation in the cytoplasm with a corresponding increase in lipid and carbohydrate storage material.The mitotic spindle first formed in one corner of the nucleus, then elongated until the spindle poles were oriented at either end of the nucleus. During the intermediate stages of mitosis the chromatin was arranged around the periphery of the spindle, which consisted mostly of chromosomal fibres. In the later stages the nucleus elongated and became dumbbell-shaped, with long straight fibres passing through the nucleus from pole to pole. The end of mitosis was marked by the chromatin assuming a ‘two-track’ configuration at the poles on either side of the intranuclear fibres and by the breakdown of the nuclear envelope in the constricted region of the dumbbell-shaped nucleus.After the daughter nuclei had separated, they migrated into new hyphal branches and septum synthesis was subsequently initiated. The septa grew by centripetal invagination in both the intercellular and the axenic hyphal states. There were often accumulations of mitochondria in the region of septal growth. Mature septa of intercellular P. coronata and axenic P. coronata and P. graminis tritici were typical of those found elsewhere in the rust fungi.


2014 ◽  
Vol 25 (25) ◽  
pp. 4034-4048 ◽  
Author(s):  
Natalie J. Nannas ◽  
Eileen T. O’Toole ◽  
Mark Winey ◽  
Andrew W. Murray

The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.


2008 ◽  
Vol 182 (4) ◽  
pp. 715-726 ◽  
Author(s):  
Marianne Uteng ◽  
Christian Hentrich ◽  
Kota Miura ◽  
Peter Bieling ◽  
Thomas Surrey

Molecular motors are required for spindle assembly and maintenance during cell division. How motors move and interact inside spindles is unknown. Using photoactivation and photobleaching, we measure mitotic motor movement inside a dynamic spindle. We find that dynein–dynactin transports the essential motor Eg5 toward the spindle poles in Xenopus laevis egg extract spindles, revealing a direct interplay between two motors of opposite directionality. This transport occurs throughout the spindle except at the very spindle center and at the spindle poles, where Eg5 remains stationary. The variation of Eg5 dynamics with its position in the spindle is indicative of position-dependent functions of this motor protein. Our results suggest that Eg5 drives microtubule flux by antiparallel microtubule sliding in the spindle center, whereas the dynein-dependent concentration of Eg5 outside the spindle center could contribute to parallel microtubule cross-linking. These results emphasize the importance of spatially differentiated functions of motor proteins and contribute to our understanding of spindle organization.


2013 ◽  
Vol 200 (2) ◽  
pp. 203-218 ◽  
Author(s):  
Stuart Cane ◽  
Anna A. Ye ◽  
Sasha J. Luks-Morgan ◽  
Thomas J. Maresca

Chromosome biorientation promotes congression and generates tension that stabilizes kinetochore–microtubule (kt-MT) interactions. Forces produced by molecular motors also contribute to chromosome alignment, but their impact on kt-MT attachment stability is unclear. A critical force that acts on chromosomes is the kinesin-10–dependent polar ejection force (PEF). PEFs are proposed to facilitate congression by pushing chromosomes away from spindle poles, although knowledge of the molecular mechanisms underpinning PEF generation is incomplete. Here, we describe a live-cell PEF assay in which tension was applied to chromosomes by manipulating levels of the chromokinesin NOD (no distributive disjunction; Drosophila melanogaster kinesin-10). NOD stabilized syntelic kt-MT attachments in a dose- and motor-dependent manner by overwhelming the ability of Aurora B to mediate error correction. NOD-coated chromatin stretched away from the pole via lateral and end-on interactions with microtubules, and NOD chimeras with either plus end–directed motility or tip-tracking activity produced PEFs. Thus, kt-MT attachment stability is modulated by PEFs, which can be generated by distinct force-producing interactions between chromosomes and dynamic spindle microtubules.


Sign in / Sign up

Export Citation Format

Share Document