scholarly journals Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles

2017 ◽  
Vol 45 (6) ◽  
pp. 1323-1331 ◽  
Author(s):  
Takeshi Noda

Macroautophagy is an intracellular degradation system that involves the de novo formation of membrane structures called autophagosomes, although the detailed process by which membrane lipids are supplied during autophagosome formation is yet to be elucidated. Macroautophagy is thought to be associated with canonical membrane trafficking, but several mechanistic details are still missing. In this review, the current understanding and potential mechanisms by which membrane trafficking participates in macroautophagy are described, with a focus on the enigma of the membrane protein Atg9, for which the proximal mechanisms determining its movement are disputable, despite its key role in autophagosome formation.

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yo-hei Yamamoto ◽  
Takeshi Noda

Abstract Autophagy is a process in which a myriad membrane structures called autophagosomes are formed de novo in a single cell, which deliver the engulfed substrates into lysosomes for degradation. The size of the autophagosomes is relatively uniform in non-selective autophagy and variable in selective autophagy. It has been recently established that autophagosome formation occurs near the endoplasmic reticulum (ER). In this review, we have discussed recent advances in the relationship between autophagosome formation and endoplasmic reticulum. Autophagosome formation occurs near the ER subdomain enriched with phospholipid synthesizing enzymes like phosphatidylinositol synthase (PIS)/CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and choline/ethanolamine phosphotransferase 1 (CEPT1). Autophagy-related protein 2 (Atg2), which is involved in autophagosome formation has a lipid transfer capacity and is proposed to directly transfer the lipid molecules from the ER to form autophagosomes. Vacuole membrane protein 1 (VMP1) and transmembrane protein 41b (TMEM41b) are ER membrane proteins that are associated with the formation of the subdomain. Recently, we have reported that an uncharacterized ER membrane protein possessing the DNAJ domain, called ERdj8/DNAJC16, is associated with the regulation of the size of autophagosomes. The localization of ERdj8/DNAJC16 partially overlaps with the PIS-enriched ER subdomain, thereby implying its association with autophagosome size determination.


Author(s):  
Kazuaki Matoba ◽  
Nobuo N Noda

Summary Autophagy, which is an evolutionarily conserved intracellular degradation system, involves de novo generation of autophagosomes that sequester and deliver diverse cytoplasmic materials to the lysosome for degradation. Autophagosome formation is mediated by approximately 20 core autophagy-related (Atg) proteins, which collaborate to mediate complicated membrane dynamics during autophagy. To elucidate the molecular functions of these Atg proteins in autophagosome formation, many researchers have tried to determine the structures of Atg proteins by using various structural biological methods. Although not sufficient, the basic structural catalog of all core Atg proteins was established. In this review article, we summarize structural biological studies of core Atg proteins, with an emphasis on recently unveiled structures, and describe the mechanistic breakthroughs in autophagy research that have derived from new structural information.


2020 ◽  
Vol 48 (5) ◽  
pp. 2003-2014
Author(s):  
Jahangir Md. Alam ◽  
Nobuo N. Noda

Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.


2008 ◽  
Vol 19 (7) ◽  
pp. 2916-2925 ◽  
Author(s):  
Takashi Itoh ◽  
Naonobu Fujita ◽  
Eiko Kanno ◽  
Akitsugu Yamamoto ◽  
Tamotsu Yoshimori ◽  
...  

Macroautophagy is a mechanism of degradation of cytoplasmic components in all eukaryotic cells. In macroautophagy, cytoplasmic components are wrapped by double-membrane structures called autophagosomes, whose formation involves unique membrane dynamics, i.e., de novo formation of a double-membrane sac called the isolation membrane and its elongation. However, the precise regulatory mechanism of isolation membrane formation and elongation remains unknown. In this study, we showed that Golgi-resident small GTPase Rab33B (and Rab33A) specifically interacts with Atg16L, an essential factor in isolation membrane formation, in a guanosine triphosphate-dependent manner. Expression of a GTPase-deficient mutant Rab33B (Rab33B-Q92L) induced the lipidation of LC3, which is an essential process in autophagosome formation, even under nutrient-rich conditions, and attenuated macroautophagy, as judged by the degradation of p62/sequestosome 1. In addition, overexpression of the Rab33B binding domain of Atg16L suppressed autophagosome formation. Our findings suggest that Rab33 modulates autophagosome formation through interaction with Atg16L.


2012 ◽  
Vol 198 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Hayashi Yamamoto ◽  
Soichiro Kakuta ◽  
Tomonobu M. Watanabe ◽  
Akira Kitamura ◽  
Takayuki Sekito ◽  
...  

During the process of autophagy, cytoplasmic materials are sequestered by double-membrane structures, the autophagosomes, and then transported to a lytic compartment to be degraded. One of the most fundamental questions about autophagy involves the origin of the autophagosomal membranes. In this study, we focus on the intracellular dynamics of Atg9, a multispanning membrane protein essential for autophagosome formation in yeast. We found that the vast majority of Atg9 existed on cytoplasmic mobile vesicles (designated Atg9 vesicles) that were derived from the Golgi apparatus in a process involving Atg23 and Atg27. We also found that only a few Atg9 vesicles were required for a single round of autophagosome formation. During starvation, several Atg9 vesicles assembled individually into the preautophagosomal structure, and eventually, they are incorporated into the autophagosomal outer membrane. Our findings provide conclusive linkage between the cytoplasmic Atg9 vesicles and autophagosomal membranes and offer new insight into the requirement for Atg9 vesicles at the early step of autophagosome formation.


2019 ◽  
Author(s):  
Saki Taniguchi ◽  
Masayuki Toyoshima ◽  
Tomoyo Takamatsu ◽  
Joji Mima

In macroautophagy, de novo formation of the double membrane-bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8-family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8-mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE-16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE-16 retained the capacities to trigger efficient membrane tethering at the protein-to-lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8-mediated membrane tethering reactions require trans-assembly between the membrane-anchored forms of LC3B and GATE-16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B- and GATE-16-mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE-16 for highly-curved small vesicles (e.g. 50 nm in diameter), although GATE-16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g. 200 and 400 nm in diameter). Our findings establish curvature-sensitive trans-assembly of human Atg8-family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Yo-hei Yamamoto ◽  
Ayano Kasai ◽  
Hiroko Omori ◽  
Tomoe Takino ◽  
Munechika Sugihara ◽  
...  

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive. We characterized a novel ER membrane protein, ERdj8, in mammalian cells. ERdj8 localizes to a meshwork-like ER subdomain along with phosphatidylinositol synthase (PIS) and autophagy-related (Atg) proteins. ERdj8 overexpression extended the size of the autophagosome through its DnaJ and TRX domains. ERdj8 ablation resulted in a defect in engulfing larger targets. C. elegans, in which the ERdj8 orthologue dnj-8 was knocked down, could perform autophagy on smaller mitochondria derived from the paternal lineage but not the somatic mitochondria. Thus, ERdj8 may play a critical role in autophagosome formation by providing the capacity to target substrates of diverse sizes for degradation.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


2013 ◽  
Vol 450 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Sweta Maheshwari ◽  
Marina Lavigne ◽  
Alicia Contet ◽  
Blandine Alberge ◽  
Emilie Pihan ◽  
...  

The intra-erythrocytic proliferation of the human malaria parasite Plasmodium falciparum requires massive synthesis of PE (phosphatidylethanolamine) that together with phosphatidylcholine constitute the bulk of the malaria membrane lipids. PE is mainly synthesized de novo by the CDP:ethanolamine-dependent Kennedy pathway. We previously showed that inhibition of PE biosynthesis led to parasite death. In the present study we characterized PfECT [P. falciparum CTP:phosphoethanolamine CT (cytidylyltransferase)], which we identified as the rate-limiting step of the PE metabolic pathway in the parasite. The cellular localization and expression of PfECT along the parasite life cycle were studied using polyclonal antibodies. Biochemical analyses showed that the enzyme activity follows Michaelis–Menten kinetics. PfECT is composed of two CT domains separated by a linker region. Activity assays on recombinant enzymes upon site-directed mutagenesis revealed that the N-terminal CT domain was the only catalytically active domain of PfECT. Concordantly, three-dimensional homology modelling of PfECT showed critical amino acid differences between the substrate-binding sites of the two CT domains. PfECT was predicted to fold as an intramolecular dimer suggesting that the inactive C-terminal domain is important for dimer stabilization. Given the absence of PE synthesis in red blood cells, PfECT represents a potential antimalarial target opening the way for a rational conception of bioactive compounds.


2017 ◽  
Vol 20 (1) ◽  
pp. 435 ◽  
Author(s):  
Jieyun Cao ◽  
Michael Ng ◽  
Melanie A Felmlee

Purpose: Monocarboxylate transporters (MCTs) are involved in the transport of monocarboxylates such as ketone bodies, lactate, and pharmaceutical agents. CD147 functions as an ancillary protein for MCT1 and MCT4 for plasma membrane trafficking. Sex differences in MCT1 and MCT4 have been observed in muscle and reproductive tissues; however, there is a paucity of information on MCT sex differences in tissues involved in drug disposition. The objective of the present study was to quantify hepatic MCT1, MCT4 and CD147 mRNA, total cellular and membrane protein expression in males, over the estrous cycle in females and in ovariectomized (OVX) females. Method: Liver samples were collected from females at the four estrous cycle stages (proestrus, estrus, metestrus, diestrus), OVX females and male Sprague-Dawley rats (N = 3 – 5). Estrus cycle stage of females was determined by vaginal lavage. mRNA and protein (total and membrane) expression of MCT1, MCT4 and CD147 was evaluated by qPCR and western blot analysis. Results: MCT1 mRNA and membrane protein expression varied with estrous cycle stage, with OVX females having higher expression than males, indicating that female sex hormones may play a role in MCT1 regulation. MCT4 membrane expression varied with estrous cycle stage with expression significantly lower than males. MCT4 membrane expression in OVX females was also lower than males, suggesting that androgens play a role in membrane expression of MCT4. Males had higher membrane CD147 expression, whereas there was no difference in whole cell protein and mRNA levels suggesting that androgens are involved in regulating CD147 membrane localization. Conclusions: This study demonstrates hepatic expression and membrane localization of MCT1, MCT4 and CD147 are regulated by sex hormones. Sex differences in hepatic MCT expression may lead to altered drug disposition, so it is critical to elucidate the underlying mechanisms in the sex hormone-dependent regulation of MCT expression. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Sign in / Sign up

Export Citation Format

Share Document