scholarly journals Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML

2019 ◽  
Vol 47 (5) ◽  
pp. 1307-1325 ◽  
Author(s):  
Caroline Busch ◽  
Helen Wheadon

Abstract Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.

2016 ◽  
Vol 13 (2) ◽  
pp. 248-259 ◽  
Author(s):  
Hong-Sheng Zhou ◽  
Hong-Sheng Zhou ◽  
Bing Z. Carter ◽  
Michael Andreeff ◽  
Bing Z. Carter ◽  
...  

2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

Stem Cells ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Lizzia Raffaghello ◽  
Giordano Bianchi ◽  
Maria Bertolotto ◽  
Fabrizio Montecucco ◽  
Alessandro Busca ◽  
...  

Haematologica ◽  
2020 ◽  
Vol 106 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Sandrine Jeanpierre ◽  
Kawtar Arizkane ◽  
Supat Thongjuea ◽  
Elodie Grockowiak ◽  
Kevin Geistlich ◽  
...  

Chronic myelogenous leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the bone marrow of patients having achieved remission under treatment. We demonstrate by single-cell RNA-Seq analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38- leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their bone marrow microenvironment.


Blood ◽  
2016 ◽  
Vol 127 (26) ◽  
pp. 3369-3381 ◽  
Author(s):  
Kira Behrens ◽  
Ioanna Triviai ◽  
Maike Schwieger ◽  
Nilgün Tekin ◽  
Malik Alawi ◽  
...  

Key Points Runx1 is a key determinant of megakaryocyte cell-fate decisions in multipotent progenitors. Runx1 downregulates cell-adhesion factors that promote residency of stem cells and megakaryocytes in their bone marrow niche.


2019 ◽  
Vol 76 ◽  
pp. S94
Author(s):  
Chengxiang Xia ◽  
Hui Cheng ◽  
Tongjie Wang ◽  
Yong Dong ◽  
Qitong Weng ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


2020 ◽  
Vol 196 (12) ◽  
pp. 1103-1115
Author(s):  
Maria-Elena A. Salfelder ◽  
Kerstin A. Kessel ◽  
Uwe Thiel ◽  
Stefan Burdach ◽  
Severin Kampfer ◽  
...  

Abstract Background and purpose Radiotherapy (RT) is persistently gaining significance in the treatment of pediatric tumors. However, individual features of a growing body and multifocal stages complicate this approach. Tomotherapy offers advantages in the treatment of anatomically complex tumors with low risks of side effects. Here we report on toxicity incidence and outcome of tomotherapy with a focus on multitarget RT (mtRT). Materials and methods From 2008 to 2017, 38 children diagnosed with sarcoma were treated with tomotherapy. The median age was 15 years (6–19 years). Toxicity was graded according to the Common Terminology Criteria for Adverse Events v.4.03 and classified into symptoms during RT, acutely (0–6 months) and late (>6 months) after RT, and long-term sideeffects (>24 months). Results The main histologies were Ewing sarcoma (n = 23 [61%]) and alveolar rhabdomyosarcoma (n = 5 [13%]). RT was performed with a median total dose of 54 Gy (40.5–66.0 Gy) and a single dose of 2 Gy (1.80–2.27 Gy). Twenty patients (53%) received mtRT. Median follow-up was 29.7 months (95% confidence interval 15.3–48.2 months) with a 5-year survival of 55.2% (±9.5%). The 5‑year survival rate of patients with mtRT (n = 20) was 37.1 ± 13.2%, while patients who received single-target RT (n = 18) had a 5-year survival rate of 75 ± 10.8%. Severe toxicities (grade 3 and 4) emerged in 14 patients (70%) with mtRT and 7 patients (39%) with single-target RT. Two non-hematological grade 4 toxicities occurred during RT: one mucositis and one radiodermatitis. After mtRT 5 patients had grade 3 toxicities acute and after single-target RT 4 patients. One patient had acute non-hematological grade 4 toxicities (gastritis, pericarditis, and pericardial effusion) after mtRT. Severe late effects of RT occurred in 2 patients after mtRT and in none of the single-target RT patients. No severe long-term side effects appeared. Conclusion Our results showed acceptable levels of acute and late toxicities, considering the highly advanced diseases and multimodal treatment. Hence, tomotherapy is a feasible treatment method for young patients with anatomically complex tumors or multiple targets. Especially mtRT is a promising and innovative treatment approach for pediatric sarcomas, delivering unexpectedly high survival rates for patients with multifocal Ewing sarcomas in this study, whereby the limited number of patients should invariably be considered in the interpretation.


Sign in / Sign up

Export Citation Format

Share Document