The development of natural polymer scaffold-based therapeutics for osteochondral repair

2020 ◽  
Vol 48 (4) ◽  
pp. 1433-1445
Author(s):  
Mark Lemoine ◽  
Sarah M. Casey ◽  
John M. O'Byrne ◽  
Daniel J. Kelly ◽  
Fergal J. O'Brien

Due to the limited regenerative capacity of cartilage, untreated joint defects can advance to more extensive degenerative conditions such as osteoarthritis. While some biomaterial-based tissue-engineered scaffolds have shown promise in treating such defects, no scaffold has been widely accepted by clinicians to date. Multi-layered natural polymer scaffolds that mimic native osteochondral tissue and facilitate the regeneration of both articular cartilage (AC) and subchondral bone (SCB) in spatially distinct regions have recently entered clinical use, while the transient localized delivery of growth factors and even therapeutic genes has also been proposed to better regulate and promote new tissue formation. Furthermore, new manufacturing methods such as 3D bioprinting have made it possible to precisely tailor scaffold micro-architectures and/or to control the spatial deposition of cells in requisite layers of an implant. In this way, natural and synthetic polymers can be combined to yield bioactive, yet mechanically robust, cell-laden scaffolds suitable for the osteochondral environment. This mini-review discusses recent advances in scaffolds for osteochondral repair, with particular focus on the role of natural polymers in providing regenerative templates for treatment of both AC and SCB in articular joint defects.

2020 ◽  
Vol 4 (3) ◽  
pp. 082-090
Author(s):  
Kirteebala Pawar ◽  
Dhawal Rajendra Shinde ◽  
Dipak Dhondu Shivgan ◽  
Sagar Namdev Sherker ◽  
Shivam Devdendra Sharma ◽  
...  

In pharmaceutical formulation two main ingredients are required which is API and excipient. And excipient contains many components which plays vital role in manufacturing of dosage form as well as improve pharmaceutical parameters of the dosage form. Polymers used in any dosage form as excipient. Polymers have influencing capacity towards drug release and should be compatible, stable, non-toxic and economic etc. Generally, polymers are classified into three categories i.e natural, semi-synthetic and synthetic polymers. Nowadays, many pharmaceutical companies inclined towards using natural polymers due to many problems created with drug release and side effects. Polymers plays various application in formulation as excipient like to provide uniform drug delivery, rate controlling agent, taste masking agent, protective and stabilizing agents, etc. So that this review discuss about various natural polymers, there advantages over synthetic polymers and role of polymers in designing drug delivery system.


Author(s):  
David Segal

The book is a general text that shows how materials can contribute to solving problems facing nations in the 21st century. It is illustrated with diverse applications and highlights the potential of existing materials for everyday life, healthcare and the economies of nations. There are 13 chapters and a glossary of 500 materials with their descriptions, historical development, their use or potential use and a range of references. Specific areas include synthetic polymers (e.g. nylon), natural polymers (e.g. proteins, cellulose) and the role of materials in the development of digital computers and in healthcare. Solid-state lighting, energy supplies in the 21st century, disruptive technologies and intellectual property, in particular patents, are discussed. The book concludes by asking how the 21st century will be characterised. Will it be the Silicon Age, Genomic Age or New Polymer Age, as examples?


2015 ◽  
Vol 4 (4) ◽  
pp. 114-125 ◽  
Author(s):  
Shanta Pokhrel

Biodegradable polymers play a very important role in plastic engineering by replacing non biodegradable, non renewable petrol based polymers. Starch is a renewable, biodegradable, low cost natural polymer with high availability. Natural polymers can be blended with synthetic polymers to improve their properties significantly. This article reviews advance in starch and starch based blends and presents their numerous potential applications. Therefore, this review helps to understand the importance and characteristics of starch and its biodegradable polymers (blends) by its various aspects such as structural properties and wide applications.International Journal of Environment Vol.4(4) 2015: 114-125


2021 ◽  
Vol 11 (2) ◽  
pp. 209-223
Author(s):  
Sujata Paul ◽  
Biplajit Das ◽  
Hemanta Kumar Sharma

Biopolymers are naturally found material and most of the materials are made in nature during the life cycles of plants, animals, fungi and bacteria. For any pharmaceutical formulation the two main ingredients are active pharmaceutical ingredient and excipients. As excipients in any kind of dosage form, the biopolymers play a vital function. Biopolymers are pharmacologically inert ingredients formulated along with the active ingredient to increase the volume; they help in the formulating dosage form and also simultaneously can improve the physicochemical parameters of the dosage form and so are widely used in the development of new drug delivery system. The biopolymers which are obtained from animal sources are usually non-toxic, biocompatible, stable and economic; and can control the release pattern of the drug. Natural polymers have more preponderant effects on fast dissolving tablets than synthetic polymers. Now-a-days, because of many problems regarding drug release and adverse effects of synthetic polymers, manufacturers are going towards using natural polymers. In this review article we mainly discussed about types of polymer, different alignment of natural polymer, advantages of natural polymers over synthetic polymers, drawbacks of natural polymers, mechanism of drug release of polymer, different methods of preparation of biopolymers, role of polymer in pharmaceutical industry and drug delivery systems. Keywords: Natural polymers, Chitin, Collagen, Sources, Preparation.


2019 ◽  
Vol 14 (7) ◽  
pp. 598-606
Author(s):  
Sarah Albogami

Background:: Regeneration is the process by which body parts lost as a result of injury are replaced, as observed in certain animal species. The root of regenerative differences between organisms is still not very well understood; if regeneration merely recycles developmental pathways in the adult form, why can some animals regrow organs whereas others cannot? In the regulation of the regeneration process as well as other biological phenomena, epigenetics plays an essential role. Objective:: This review aims to demonstrate the role of epigenetic regulators in determining regenerative capacity. Results:: In this review, we discuss the basis of regenerative differences between organisms. In addition, we present the current knowledge on the role of epigenetic regulation in regeneration, including DNA methylation, histone modification, lysine methylation, lysine methyltransferases, and the SET1 family. Conclusion:: An improved understanding of the regeneration process and the epigenetic regulation thereof through the study of regeneration in highly regenerative species will help in the field of regenerative medicine in future.


2021 ◽  
Vol 10 (13) ◽  
pp. 2951
Author(s):  
Maria Baldovin ◽  
Diego Cazzador ◽  
Claudia Zanotti ◽  
Giuliana Frasson ◽  
Athanasios Saratziotis ◽  
...  

Bilateral choanal atresia (CA) is a rare congenital malformation frequently associated with other anomalies. CHARGE association is closely linked to bilateral CA. The aim of this study was to describe the outcomes of the endoscopic repair in bilateral CA, and to assess the role of postoperative nasal stenting in two cohorts of CHARGE-associated and non-syndromic CA. Thirty-nine children were retrospectively analyzed (16 patients had CHARGE-associated CA). The rate of postoperative neochoanal restenosis was 31.3% in the CHARGE population, and 47.8% in the non-syndromic CA cohort. Data on postoperative synechiae and granulation tissue formation, need for endonasal toilette and dilation procedures, and number of procedures per patient were presented. Stent positioning led to a higher number of postoperative dilation procedures per patient in the non-syndromic cohort (p = 0.018), and to a higher rate of restenosis both in the CHARGE-associated, and non-syndromic CA populations. Children with CHARGE-associated and non-syndromic bilateral CA benefitted from endonasal endoscopic CA correction. The postoperative application of an endonasal stent should be carefully evaluated.


Author(s):  
Ratnaparkhi M.P. ◽  
Karnawat G.R. ◽  
Andhale R.S.

Oral route is most preferable route of administration for various drugs, because it is convenient, economical, safest route. Fast dissolving tablets are popular nowadays, as they disintegrated in mouth within a few seconds without using water for swallow. Problems like Dysphagia in pediatric and geriatric patients have been overcome by formulating Fast dissolving tablet. Natural polymers are preferable because they are chemically inert, nontoxic, less expensive, biodegradable, and available easily than synthetic polymers. Natural polymers are obtained from the natural origin so they are devoid of any side effect. It is proved from the previous studies that Natural polymers are more-safe and effective than the synthetic polymers. Natural polymers improve the properties of tablet and they are used as binder, diluent, superdisintegrant, they also enhance the solubility of poorly water-soluble drug, decrease the disintegration time and provide nutritional supplement. The aim of the present article is to study various natural polymers used in fast dissolving tablets.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
C. Galán-Marín ◽  
C. Rivera-Gómez ◽  
F. Bradley

The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate) and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV) and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and energy dispersive X-ray fluorescence (EDXRF) techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document