Regulation of retrotransposition in Arabidopsis

Author(s):  
Seung Cho Lee ◽  
Robert A. Martienssen

Plant genomes are largely comprised of retrotransposons which can replicate through ‘copy and paste' mechanisms. Long terminal repeat (LTR) retrotransposons are the major class of retrotransposons in plant species, and importantly they broadly affect the expression of nearby genes. Although most LTR retrotransposons are non-functional, active retrotranspositions have been reported in plant species or mutants under normal growth condition and environmental stresses. With the well-defined reference genome and numerous mutant alleles, Arabidopsis studies have significantly expanded our understanding of retrotransposon regulation. Active LTR retrotransposon loci produce virus-like particles to perform reverse transcription, and their complementary DNA can be inserted into new genomic loci. Due to the detrimental consequences of retrotransposition, plants like animals, have developed transcriptional and post-transcriptional silencing mechanisms. Recently several different genome-wide techniques have been developed to understand LTR retrotransposition in Arabidopsis and different plant species. Transposome, methylome, transcriptome, translatome and small RNA sequencing data have revealed how host silencing mechanisms can affect multiple steps of retrotransposition. These recent advances shed light on future mechanistic studies of retrotransposition as well as retrotransposon diversity.

Genomics Data ◽  
2016 ◽  
Vol 7 ◽  
pp. 46-53 ◽  
Author(s):  
Suyash Agarwal ◽  
Naresh Sahebrao Nagpure ◽  
Prachi Srivastava ◽  
Basdeo Kushwaha ◽  
Ravindra Kumar ◽  
...  

2021 ◽  
Author(s):  
Jun Ke Yu ◽  
Da Fu Chen ◽  
Rui Guo

Apis cerana cerana is an excellent subspecies of Apis cerana, playing a vital role in pollination for wild flowers and crops as well as ecological balance. Nosema ceranae, an emergent fungal parasite infecting various bee species, originates from eastern honeybee. In this article, midguts of N. ceranae-inoculated A. c. cerana workers at 7 days post inoculation (dpi) and 10 dpi (AcT1 and AcT2) and un-inoculated workers' midguts (AcCK1, AcCK2) were subjected to Nanopore-based genome-wide DNA methylation sequencing. Totally, 1773258, 2151476, 1927874 and 2109961 clean reads were generated from AcCK1, AcCK2, AcT1, and AcT2 groups, with the N50 lengths of 7548, 7936, 7678, and 7291 and the average quality value of 8.97, 8.95, 9.24, and 8.98, respectively. Among these, 93.85%, 94.49%, 88.69%, and 81.27% clean reads could be mapped to the reference genome of A. c. cerana. In the aforementioned four groups, 2149685, 2614513, 1637018 and 2726985 CHG sites were identified; the numbers of CHH sites were 9581990, 11801082, 7178559, and 12342423, whereas those of CpG sites were 14325356, 15703508, 14856284 and 13956849, respectively. Additionally, there were 36114, 118867, 30249, and 82984 6mA methylation sites respectively discovered. These data can be used for identifying differential 5mC methylation and 6mA methylation engaged in response of eastern honeybee workers to N. ceranae infestation, and for investigating the 5mC or 6mA methylation-mediated mechanism underlying host response.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 793
Author(s):  
Jorge Solis-Miranda ◽  
Citlali Fonseca-García ◽  
Noreide Nava ◽  
Ronal Pacheco ◽  
Carmen Quinto

The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.


2020 ◽  
Vol 7 (6) ◽  
pp. 978-993 ◽  
Author(s):  
Ziwen He ◽  
Shaohua Xu ◽  
Zhang Zhang ◽  
Wuxia Guo ◽  
Haomin Lyu ◽  
...  

Abstract Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies. Here, we sequenced the genomes/transcriptomes of 16 species belonging in three major mangrove clades. To detect convergence in a large phylogeny, a CCS+ model is implemented, extending the more limited CCS method (convergence at conservative sites). Using the empirical control for reference, the CCS+ model reduces the noises drastically, thus permitting the identification of 73 convergent genes with Ptrue (probability of true convergence) > 0.9. Products of the convergent genes tend to be on the plasma membrane associated with salinity tolerance. Importantly, convergence is more often manifested at a higher level than at amino-acid (AA) sites. Relative to >50 plant species, mangroves strongly prefer 4 AAs and avoid 5 others across the genome. AA substitutions between mangrove species strongly reflect these tendencies. In conclusion, the selection of taxa, the number of species and, in particular, the empirical control are all crucial for detecting genome-wide convergence. We believe this large study of mangroves is the first successful attempt at detecting genome-wide site convergence.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1178
Author(s):  
Zhihua Wu ◽  
Hong Liu ◽  
Wen Huang ◽  
Lisha Yi ◽  
Erdai Qin ◽  
...  

RWP-RK is a plant-specific family of transcription factors, involved in nitrate response, gametogenesis, and nodulation. However, genome-wide characterization, phylogeny, and the regulation of RWP-RK genes in the nodulating and non-nodulating plant species of nitrogen-fixing clade (NFC) are widely unknown. Therefore, we identified a total of 292 RWP-RKs, including 278 RWP-RKs from 25 NFC species and 14 RWP-RKs from the outgroup, Arabidopsis thaliana. We classified the 292 RWP-RKs in two subfamilies: the NIN-like proteins (NLPs) and the RWP-RK domain proteins (RKDs). The transcriptome and phylogenetic analysis of RWP-RKs suggested that, compared to RKD genes, the NLP genes were just upregulated in nitrate response and nodulation. Moreover, nodule-specific NLP genes of some nodulating NFC species may have a common ancestor (OG0002084) with AtNLP genes in A. thaliana. Further, co-expression networks of A.thaliana under N-starvation and N-supplementation conditions revealed that there is a higher correlation between expression of AtNLP genes and symbiotic genes during N-starvation. In P. vulgaris, we confirmed that N-starvation stimulated nodulation by regulating expression of PvNLP2, closely related to AtNLP6 and AtNLP7 with another common origin (OG0004041). Taken together, we concluded that different origins of the NLP genes involved in both N-starvation response and specific expression of nodulation would contribute to the evolution of nodulation in NFC plant species. Our results shed light on the phylogenetic relationships of NLP genes and their differential regulation in nitrate response of A. thaliana and nodulation of NFC.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Ming-an Sun ◽  
Karthik Raja Velmurugan ◽  
David Keimig ◽  
Hehuang Xie

The emerging genome-wide hairpin bisulfite sequencing (hairpin-BS-Seq) technique enables the determination of the methylation pattern for DNA double strands simultaneously. Compared with traditional bisulfite sequencing (BS-Seq) techniques, hairpin-BS-Seq can determine methylation fidelity and increase mapping efficiency. However, no computational tool has been designed for the analysis of hairpin-BS-Seq data yet. Here we present HBS-tools, a set of command line based tools for the preprocessing, mapping, methylation calling, and summarizing of genome-wide hairpin-BS-Seq data. It accepts paired-end hairpin-BS-Seq reads to recover the original (pre-bisulfite-converted) sequences using global alignment and then calls the methylation statuses for cytosines on both DNA strands after mapping the original sequences to the reference genome. After applying to hairpin-BS-Seq datasets, we found that HBS-tools have a reduced mapping time and improved mapping efficiency compared with state-of-the-art mapping tools. The HBS-tools source scripts, along with user guide and testing data, are freely available for download.


2015 ◽  
Author(s):  
Minliang Jin ◽  
Haijun Liu ◽  
Cheng He ◽  
Junjie Fu ◽  
Yingjie Xiao ◽  
...  

Variation in gene expression contributes to the diversity of phenotype. The construction of the pan-transcriptome is especially necessary for species with complex genomes, such as maize. However, knowledge of the regulation mechanisms and functional consequences of the pan-transcriptome is limited. In this study, we identified 13,382 nuclear expression presence and absence variation candidates (ePAVs, expressed in 5%~95% lines; based on the reference genome) by re-analyzing the RNA sequencing data from the kernels (15 days after pollination) of 368 maize diverse inbreds. It was estimated that only ~1% of the ePAVs are explained by DNA sequence presence and absence variations (PAV). The ePAV genes tend to be regulated by distant eQTLs when compared with non-ePAV genes (called here core expression genes, expressed in more than 95% lines). When the expression presence/absence status was used as the ???genotype??? to perform genome-wide association study, 56 (0.42%) ePAVs were significantly associated with 15 agronomic traits and 1,967 (14.74%) with 526 metabolic traits, measured from the mature kernels. While the above was majorly based on the reference genome, by using a modified ???assemble-then-align??? strategy, 2,355 high confidence novel sequences with a total length of 1.9Mb were found absent in the current B73 reference genome (v2). Ten randomly selected novel sequences were validated with genomic PCR. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes. Two novel validated sequences annotated as NBS_LRR like genes were found to associate with flavonoid content and their homologs in rice were also found to affect flavonoids and disease-resistance. Novel sequences absent in the present reference genome might be functionally important and deserve more attentions. This study provides novel perspectives and resources to discover maize quantitative trait variations and help us to better understand the kernel regulation networks, thus enhancing maize breeding.


2019 ◽  
Vol 20 (22) ◽  
pp. 5697 ◽  
Author(s):  
Michelle E. Pewarchuk ◽  
Mateus C. Barros-Filho ◽  
Brenda C. Minatel ◽  
David E. Cohn ◽  
Florian Guisier ◽  
...  

Recent studies have uncovered microRNAs (miRNAs) that have been overlooked in early genomic explorations, which show remarkable tissue- and context-specific expression. Here, we aim to identify and characterize previously unannotated miRNAs expressed in gastric adenocarcinoma (GA). Raw small RNA-sequencing data were analyzed using the miRMaster platform to predict and quantify previously unannotated miRNAs. A discovery cohort of 475 gastric samples (434 GA and 41 adjacent nonmalignant samples), collected by The Cancer Genome Atlas (TCGA), were evaluated. Candidate miRNAs were similarly assessed in an independent cohort of 25 gastric samples. We discovered 170 previously unannotated miRNA candidates expressed in gastric tissues. The expression of these novel miRNAs was highly specific to the gastric samples, 143 of which were significantly deregulated between tumor and nonmalignant contexts (p-adjusted < 0.05; fold change > 1.5). Multivariate survival analyses showed that the combined expression of one previously annotated miRNA and two novel miRNA candidates was significantly predictive of patient outcome. Further, the expression of these three miRNAs was able to stratify patients into three distinct prognostic groups (p = 0.00003). These novel miRNAs were also present in the independent cohort (43 sequences detected in both cohorts). Our findings uncover novel miRNA transcripts in gastric tissues that may have implications in the biology and management of gastric adenocarcinoma.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Oluchi Aroh ◽  
Kenneth M. Halanych

Abstract Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 267
Author(s):  
Axel J. Giudicatti ◽  
Ariel H. Tomassi ◽  
Pablo A. Manavella ◽  
Agustin L. Arce

MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.


Sign in / Sign up

Export Citation Format

Share Document