Post-Exercise Reduction of Blood Pressure in Hypertensive Men is Not Due to Acute Impairment of Baroreflex Function

1984 ◽  
Vol 67 (1) ◽  
pp. 97-103 ◽  
Author(s):  
T. Bennett ◽  
R. G. Wilcox ◽  
I. A. MacDonald

1. Two experiments were carried out in male subjects. In the first experiment heart rate and blood pressures were measured before, during and for 90 min after a 50 min period of intermittent exercise in seven hypertensive subjects. After exercise there was a marked reduction in systolic and diastolic blood pressures; this effect lasted throughout the 90 min observation period and was unaccompanied by tachycardia. 2. In the second experiment heart rate and blood pressures were measured before and during the rest periods in a 50 min session of intermittent exercise in nine hypertensive and nine normotensive subjects. Following the first 10 min bout of exercise, resting blood pressures were significantly reduced in the hypertensive subjects; the reduction in blood pressure progressively increased following successive exercise periods. The normotensive subjects did not show a significant reduction in resting blood pressures until the fifth bout of exercise had been completed. 3. In the second experiment also, the competence of baroreflexes was assessed by measuring cardiovascular responses to lower body sub-atmospheric pressure (LBSP) 30 min before and 30 and 60 min after exercise. The post-exercise reduction in blood pressure was not due to exercise-induced impairment of baroreflex mechanisms since the reduced blood pressure after exercise was well maintained during lower body sub-atmospheric pressure. Furthermore, after exercise, exposure to lower body subatmospheric pressure elicited greater increases in heart rate and forearm vascular resistance than were seen before exercise.

2016 ◽  
Vol 29 (3) ◽  
pp. 543-552
Author(s):  
João Douglas Alves ◽  
Jorge Luiz de Brito Gomes ◽  
Caio Victor Coutinho de Oliveira ◽  
José Victor de Miranda Henriques Alves ◽  
Fabiana Ranielle de Siqueira Nogueira ◽  
...  

Abstract Introduction: Tai-Chi-Chuan and Yoga have becoming popular practices. However is unclear the cardiovascular effects, and if they present similar behavior to aerobic and resistance sessions. Objective: To evaluate the cardiovascular responses during the session and post-exercise hypotension (PEH) of Tai Chi Chuan (TS) and Yoga (YS) in comparison to aerobic (AS) and resistance (SR) exercises. Methods: Fourteen young women (22.3 ± 2 years) apparently healthy performed four sessions (AS, RS, TS and YS). The heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were recorded at resting, during (every 10 minutes) and until 50 minutes of recovery. Results: AS, RS, TS e YS showed significant increase in HR compared to resting.AS at 10, 30 e 50 minutes in relation to RS, TS e YS. The RS in relation to TS and YS at 10, 30 and 50 minutes. No significant difference between TS and YS. SBP was significantly increased in AS, RS, TS e YS at 10, 30 e 50 minutes during the session, in relation to rest. AS was significantly higher at 30 e 50 minutes than RS and higher than TS and YS at 10, 30 e 50 minutes. No significant difference in DBP. For PEH, AS, RS and TS significantly reduced at 10, 30 and 50 minutes. YS reduced at 50 minutes. No significant diastolic PEH. Conclusion: TS and YS showed as safe alternatives of exercising in the normotensive young adult woman, despite having lower values, they promote similar hemodynamic behavior to AS and RS.


2013 ◽  
pp. 653-662 ◽  
Author(s):  
T. SOTA ◽  
S. MATSUO ◽  
Y. UCHIDA ◽  
H. HAGINO ◽  
Y. KAWAI

This study was undertaken to investigate the effects of lower body positive pressure (LBPP) on cardiovascular responses during a 15-min walking trial in young (22.1±0.4 years) and elderly women (67.8±1.1 years). The application of 20 mm Hg LBPP reduced ground reaction forces by 31.2±0.5 kgw in both groups. We hypothesized that cardiovascular responses to LBPP during walking were different between the young and elderly subjects. Applying 20 mm Hg of LBPP increased diastolic and mean blood pressure but not systolic blood pressure in both groups. LBPP-induced reduction in heart rate (HR) occurred more quickly in the young group compared to the elderly group (p<0.05). Applying LBPP also decreased double product (systolic blood pressure x HR) in both groups, suggesting that LBPP reduces myocardial oxygen consumption during exercise. These results suggest that heart rate responses to LBPP during exercise vary with increasing age.


1975 ◽  
Vol 38 (1) ◽  
pp. 91-95 ◽  
Author(s):  
J. S. Petrofsky ◽  
A. R. Lind

Previous studies on the relationship of age to isometric muscular strength are few, on isometric endurance rare, and on the physiological responses to static effort nonexistent. This investigation assessed the maximal handgrip strength, the duration of a fatiguing handgrip contraction at a tension of 40% of maximal strength and the heart rate and blood pressure during that contraction of 100 men aged from 22 to 62 yr. The subjects of this study were all men employed in a machine shop for a large aircraft corporation. The homogeneity of their occupations may well explain why, unlike previous reports, we found no change in muscular strength or muscular endurance with age. However, although heart rate increased during the contraction in all subjects, the increase in heart rate was greater in younger men. In contrast, while both systolic and diastolic blood pressures increased during the contraction in all subjects, the largest increase in systolic blood pressure was attained by the men in the older decades; there was no difference due to age in the diastolic blood pressures. The implications of these findings are discussed.


1994 ◽  
Vol 267 (1) ◽  
pp. R26-R33 ◽  
Author(s):  
G. C. Butler ◽  
Y. Yamamoto ◽  
R. L. Hughson

We have shown previously that the heart rate variability (HRV) signal is fractal in nature with a high degree of complexity, as given by the calculated fractal dimension (DF). We have also reported that loss of complexity, as indicated by a reduction in DF of HRV, is associated with orthostatic hypotension and impending syncope. To extend this investigation of cardiovascular responses, we have investigated the signal characteristics of short-term systolic blood pressure variability (BPV) coincident with measurements of HRV during orthostatic stress. Eight healthy men completed a test protocol of 20 min supine rest followed sequentially by 10 min at each of -5, -15, -25, -40, and -50 mmHg lower body negative pressure (LBNP) and 10 min supine recovery. We found that resting BPV and HRV were fractal with approximately 70% of both variables in the fractal component of the variability signal. The slope of the 1/f beta relationship was 1.16 +/- 0.12 for HRV and 2.31 +/- 0.17 for BPV. With increasing levels of orthostatic stress, the 1/f beta slope of HRV increased significantly to 1.68 +/- 0.08 at -50 mmHg LBNP, whereas the 1/f beta slope was unchanged for BPV. Indicators of parasympathetic and sympathetic nervous system activity derived from heart rate variability suggested reduced and increased values, respectively, as the LBNP increased. These data indicate important differences in heart rate and blood pressure control under orthostatic stress.


Author(s):  
Gabriel Kolesny Tricot ◽  
Fabiula Isoton Isoton Novelli ◽  
Lucieli Teresa Cambri

AbstractThis study aimed to assess whether obesity and/or maximal exercise can change 24 h cardiac autonomic modulation and blood pressure in young men. Thirty-nine men (n: 20; 21.9±1.8 kg·m−2, and n: 19; 32.9±2.4 kg·m−2) were randomly assigned to perform a control (non-exercise) and an experimental day exercise (after maximal incremental test). Cardiac autonomic modulation was evaluated through frequency domain heart rate variability (HRV). Obesity did not impair the ambulatory HRV (p>0.05), however higher diastolic blood pressure during asleep time (p=0.02; group main effect) was observed. The 24 h and awake heart rate was higher on the experimental day (p<0.05; day main effect), regardless of obesity. Hypotension on the experimental day, compared to control day, was observed (p<0.05). Obesity indicators were significantly correlated with heart rate during asleep time (Rho=0.34 to 0.36) and with ambulatory blood pressure(r/Rho=0.32 to 0.53). Furthermore, the HRV threshold workload was significantly correlated with ambulatory heart rate (r/Rho=− 0.38 to−0.52). Finally, ambulatory HRV in obese young men was preserved; however, diastolic blood pressure was increased during asleep time. Maximal exercise caused heart rate increase and 24h hypotension, with decreased cardiac autonomic modulation in the first hour, regardless of obesity.


Author(s):  
Ewan Thomas ◽  
Marianna Bellafiore ◽  
Ambra Gentile ◽  
Antonio Paoli ◽  
Antonio Palma ◽  
...  

AbstractThe aim of this study will be to review the current body of literature to understand the effects of stretching on the responses of the cardiovascular system. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching on responses of the cardiovascular system were investigated. Outcomes regarded heart rate(HR), blood pressure, pulse wave velocity (PWV of which baPWV for brachial-ankle and cfPWV for carotid-femoral waveforms), heart rate variability and endothelial vascular function. Subsequently, the effects of each outcome were quantitatively synthetized using meta-analytic synthesis with random-effect models. A total of 16 studies were considered eligible and included in the quantitative synthesis. Groups were also stratified according to cross-sectional or longitudinal stretching interventions. Quality assessment through the NHLBI tools observed a “fair-to-good” quality of the studies. The meta-analytic synthesis showed a significant effect of d=0.38 concerning HR, d=2.04 regarding baPWV and d=0.46 for cfPWV. Stretching significantly reduces arterial stiffness and HR. The qualitative description of the studies was also supported by the meta-analytic synthesis. No adverse effects were reported, after stretching, in patients affected by cardiovascular disease on blood pressure. There is a lack of studies regarding vascular adaptations to stretching.


1963 ◽  
Vol 18 (5) ◽  
pp. 987-990 ◽  
Author(s):  
Shanker Rao

Reports of cardiovascular responses to head-stand posture are lacking in literature. The results of the various responses, respectively, to the supine, erect, and head-stand posture, are as follows: heart rate/min 67, 84, and 69; brachial arterial pressure mm Hg 92, 90, and 108; posterior tibial arterial pressure mm Hg 98, 196, and 10; finger blood flow ml/100 ml min 4.5, 4.4, and 5.2; toe blood flow ml/100 ml min 7.1, 8.1, and 3.4; forehead skin temperature C 34.4, 34.0 and 34.3; dorsum foot skin temperature C 28.6, 28.2, and 28.2. It is inferred that the high-pressure-capacity vessels between the heart level and posterior tibial artery have little nervous control. The high-pressure baroreceptors take active part in postural adjustments of circulation. The blood pressure equating mechanism is not as efficient when vital tissues are pooled with blood as when blood supply to them is reduced. man; heart rate; blood flow; skin temperature Submitted on January 3, 1963


1967 ◽  
Vol 46 (2) ◽  
pp. 307-315 ◽  
Author(s):  
E. DON STEVENS ◽  
D. J. RANDALL

1. Changes in blood pressure in the dorsal aorta, ventral aorta and subintestinal vein, as well as changes in heart rate and breathing rate during moderate swimming activity in the rainbow trout are reported. 2. Blood pressures both afferent and efferent to the gills increased during swimming and then returned to normal levels within 30 min. after exercise. 3. Venous blood pressure was characterized by periodic increases during swimming. The pressure changes were not in phase with the body movements. 4. Although total venous return to the heart increased during swimming, a decreased blood flow was recorded in the subintestinal vein. 5. Heart rate and breathing rate increased during swimming and then decreased when swimming ceased. 6. Some possible mechanisms regulating heart and breathing rates are discussed.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 860 ◽  
Author(s):  
Marcos Hortelano ◽  
Richard Reilly ◽  
Francisco Castells ◽  
Raquel Cervigón

Orthostatic intolerance syndrome occurs when the autonomic nervous system is incapacitated and fails to respond to the demands associated with the upright position. Assessing this syndrome among the elderly population is important in order to prevent falls. However, this problem is still challenging. The goal of this work was to determine the relationship between orthostatic intolerance (OI) and the cardiovascular response to exercise from the analysis of heart rate and blood pressure. More specifically, the behavior of these cardiovascular variables was evaluated in terms of refined composite multiscale fuzzy entropy (RCMFE), measured at different scales. The dataset was composed by 65 older subjects, 44.6% (n = 29) were OI symptomatic and 55.4% (n = 36) were not. Insignificant differences were found in age and gender between symptomatic and asymptomatic OI participants. When heart rate was evaluated, higher differences between groups were observed during the recovery period immediately after exercise. With respect to the blood pressure and other hemodynamic parameters, most significant results were obtained in the post-exercise stage. In any case, the symptomatic OI group exhibited higher irregularity in the measured parameters, as higher RCMFE levels in all time scales were obtained. This information could be very helpful for a better understanding of cardiovascular instability, as well as to recognize risk factors for falls and impairment of functional status.


Sign in / Sign up

Export Citation Format

Share Document