Selenite protects human endothelial cells from oxidative damage and induces thioredoxin reductase

2001 ◽  
Vol 100 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Sue MILLER ◽  
Simon W. WALKER ◽  
John R. ARTHUR ◽  
Fergus NICOL ◽  
Karen PICKARD ◽  
...  

The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 μM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant protection against the harmful effects of 100 μM t-BuOOH, with complete protection being achieved with 40 nM selenite. The preincubation period was required for selenite to exert this protective effect on endothelial cells. When compared with selenium-deficient cells, the activities of cytoplasmic glutathione peroxidase (GPX-1), phospholipid hydroperoxide glutathione peroxidase (GPX-4) and thioredoxin reductase (TR) were each induced approx. 3–4-fold by 40 nM selenite. HCAEC and HUVEC showed great similarity in their relative abilities to resist oxidative damage in the presence and absence of selenite, and the activities of TR and the GPXs were also similar in these cell types. BAEC were more susceptible to damage by 100 μM t-BuOOH than were human endothelial cells, and could not be protected completely by incubation with selenite at concentrations up to 160 nM. The activity of TR in human endothelial cells was approx. 25-fold greater than that in BAEC of a similar selenium status, but GPX-1 and GPX-4 activities were not significantly different between the human and bovine cells. These studies, although performed with a small number of cultures, show for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress. TR may be an important antioxidant selenoprotein in this regard, in addition to the GPXs. The data also suggest that HUVEC, but not BAEC, represent a suitable model system in which to study the effects of selenium on the endothelium of human coronary arteries.

2001 ◽  
Vol 100 (5) ◽  
pp. 543 ◽  
Author(s):  
Sue MILLER ◽  
Simon W. WALKER ◽  
John R. ARTHUR ◽  
Fergus NICOL ◽  
Karen PICKARD ◽  
...  

2016 ◽  
Vol 116 (08) ◽  
pp. 317-327 ◽  
Author(s):  
Eliana Montanari ◽  
Stefan Stojkovic ◽  
Christoph Kaun ◽  
Christof E. Lemberger ◽  
Rainer de Martin ◽  
...  

SummaryInterleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M–CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL–1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL–33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M–CSF production by human endothelial cells, an effect that appears to be mediated by NF–κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall.Supplementary Material to this article is available online at www.thrombosis-online.com.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Katja Lakota ◽  
Katjusa Mrak-Poljsak ◽  
Blaz Rozman ◽  
Snezna Sodin-Semrl

The effects of anti-inflammatory plant extracts, such as black tea extract (BTE) and resveratrol (RSV) could modulate cell activation leading to atherosclerosis, however there is little comparative information about how different endothelial cell types are affected by these compounds. In order to compare human endothelial cells derived from different origins (umbilical vein or HUVEC, coronary artery or HCAEC, microvascular or HMVEC) and their interleukin-1β(IL-1β) responsiveness, IL-6 ELISA, RT-PCR, tissue factor assay, and prostacyclin responses using 6-ketoPGF1αELISA were determined. The IL-1β-induced IL-6 levels were dose-dependent with highest responses seen in HCAEC. Significant inhibition of IL-1βresponses was achieved with BTE and RSV, with the largest decrease of IL-6 and TF seen in HCAEC. Prostacyclin levels were highest in HUVEC and were inhibited by RSV in all cell types. The differences between the endothelial cell types could account for greater susceptibility of coronary arteries to inflammation and atherogenesis.


Circulation ◽  
1996 ◽  
Vol 94 (6) ◽  
pp. 1402-1407 ◽  
Author(s):  
Seunghee Kim-Schulze ◽  
Kelly A. McGowan ◽  
Susan C. Hubchak ◽  
Maria C. Cid ◽  
Mary Beth Martin ◽  
...  

2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


Sign in / Sign up

Export Citation Format

Share Document