scholarly journals Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis

2021 ◽  
Vol 135 (4) ◽  
pp. 597-611
Author(s):  
Dandan Dou ◽  
Jinghui Liang ◽  
Xiangyu Zhai ◽  
Guosheng Li ◽  
Hongjuan Wang ◽  
...  

Abstract Background: Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that is associated with immune dysfunction. Recent studies have indicated that the neurosecretory hormone oxytocin (OXT) has been proven to alleviate experimental colitis. Methods: We investigated the role of OXT/OXT receptor (OXTR) signalling in dendritic cells (DCs) using mice with specific OXTR deletion in CD11c+ cells (OXTRflox/flox×CD11c-cre mice) and a dextran sulfate sodium (DSS)-induced colitis model. Results: The level of OXT was abnormal in the serum or colon tissue of DSS-induced colitis mice or the plasma of UC patients. Both bone marrow-derived DCs (BMDCs) and lamina propria DCs (LPDCs) express OXTR. Knocking out OXTR in DCs exacerbated DSS-induced acute and chronic colitis in mice. In contrast, the injection of OXT-pretreated DCs significantly ameliorated colitis. Mechanistically, OXT prevented DC maturation through the phosphatidylinositol 4,5-bisphosphate 3-kinase (Pi3K)/AKT pathway and promoted phagocytosis, adhesion and cytokine modulation in DCs. Furthermore, OXT pre-treated DCs prevent CD4+ T cells differentiation to T helper 1 (Th1) and Th17. Conclusions: Our results suggest that OXT-induced tolerogenic DCs efficiently protect against experimental colitis via Pi3K/AKT pathway. Our work provides evidence that the nervous system participates in the immune regulation of colitis by modulating DCs. Our findings suggest that generating ex vivo DCs pretreated with OXT opens new therapeutic perspectives for the treatment of UC in humans.

2019 ◽  
Vol 51 (10) ◽  
pp. 1-14 ◽  
Author(s):  
Jung Hwan Hwang ◽  
Tae-Hwan Kim ◽  
Yong-Hoon Kim ◽  
Jung-Ran Noh ◽  
Dong-Hee Choi ◽  
...  

Abstract Dysregulated immune responses and impaired function in intestinal epithelial cells contribute to the pathogenesis of inflammatory bowel disease (IBD). Growth arrest and DNA damage-inducible 45 beta (Gadd45β) has been implicated in the pathogenesis of various inflammatory symptoms. However, the role of Gadd45β in IBD is completely unknown. This study aimed to evaluate the role of Gadd45β in IBD. Gadd45β-KO mice exhibited drastically greater susceptibility to dextran sulfate sodium (DSS)-induced colitis and mortality than C57BL/6J mice. Bone marrow transplantation experiments revealed that Gadd45β functions predominantly in the intestinal epithelium and is critical during the recovery phase. Gadd45β regulates the TGF-β signaling pathway in colon tissue and epithelial cells by inhibiting Smurf-mediated degradation of TGF-β receptor type 1 via competitive binding to the N-terminal domain of Smad7. Furthermore, these results indicate that the Gadd45β-regulated TGF-β signaling pathway is involved in wound healing by enhancing epithelial restitution. These results expand the current understanding of the function of Gadd45β and its therapeutic potential in ulcerative colitis.


2012 ◽  
Vol 303 (12) ◽  
pp. G1384-G1392 ◽  
Author(s):  
Bradford E. Berndt ◽  
Min Zhang ◽  
Stephanie Y. Owyang ◽  
Tyler S. Cole ◽  
Teresa W. Wang ◽  
...  

The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis. We found that butyrate, in addition to suppressing LPS-induced bone marrow-derived DC maturation and inhibiting DC IL-12 production, significantly induced IL-23 expression. The upregulation of mRNA subunit IL-23p19 at the pretranslational level was consistent with the role of HDACi on the epigenetic modification of gene expression. Furthermore, the mechanism of IL-23p19 upregulation was independent of Stat3 and ZBP89. Coculture of splenocytes with LPS-stimulated DCs pretreated with or without butyrate was performed and showed a significant induction of IL-17 and IL-10. We demonstrated further the effect of butyrate in vivo using dextran sulfate sodium (DSS)-induced colitis and found that the addition of butyrate in the drinking water of mice worsened DSS-colitis. This is in contrast to the daily intraperitoneal butyrate injection of DSS-treated mice, which mildly improved disease severity. Our study highlights a novel effect of butyrate in upregulating IL-23 production of activated DCs and demonstrates a difference in the host response to the oral vs. systemic route of butyrate administration.


2021 ◽  
Vol 22 (8) ◽  
pp. 3978
Author(s):  
Pavla Taborska ◽  
Dmitry Stakheev ◽  
Jirina Bartunkova ◽  
Daniel Smrz

The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Ze-Jun Yang ◽  
Bo-Ya Wang ◽  
Tian-Tian Wang ◽  
Fei-Fei Wang ◽  
Yue-Xin Guo ◽  
...  

Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2878-2885 ◽  
Author(s):  
Kavita M. Dhodapkar ◽  
Scott Barbuto ◽  
Phillip Matthews ◽  
Anjli Kukreja ◽  
Amitabha Mazumder ◽  
...  

Abstract IL17-producing (Th17) cells are a distinct lineage of T helper cells that regulate immunity and inflammation. The role of antigen-presenting cells in the induction of Th17 cells in humans remains to be fully defined. Here, we show that human dendritic cells (DCs) are efficient inducers of Th17 cells in culture, including antigen-specific Th17 cells. Although most freshly isolated circulating human Th17 cells secrete IL17 alone or with IL2, those induced by DCs are polyfunctional and coexpress IL17 and IFNγ (Th17-1 cells). The capacity of DCs to expand Th17-1 cells is enhanced upon DC maturation, and mature DCs are superior to monocytes for the expansion of autologous Th17 cells. In myeloma, where tumors are infiltrated by DCs, Th17 cells are enriched in the bone marrow relative to circulation. Bone marrow from patients with myeloma contains a higher proportion of Th17-1 cells compared with the marrow in preneoplastic gammopathy (monoclonal gammopathy of undetermined significance [MGUS]). Uptake of apoptotic but not necrotic myeloma tumor cells by DCs leads to enhanced induction of Th17-1 cells. These data demonstrate the capacity of DCs to induce expansion of polyfunctional IL17-producing T cells in humans, and suggest a role for DCs in the enrichment of Th17-1 cells in the tumor bed.


2005 ◽  
Vol 73 (3) ◽  
pp. 1568-1577 ◽  
Author(s):  
Jose Rey-Ladino ◽  
Kasra M. Koochesfahani ◽  
Michelle L. Zaharik ◽  
Caixia Shen ◽  
Robert C. Brunham

ABSTRACT The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4+ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4+ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Shakeel Ahmed Lakho ◽  
Muhammad Haseeb ◽  
Jianmei Huang ◽  
Zhang Yang ◽  
Muhammad Waqqas Hasan ◽  
...  

AbstractDendritic cells (DCs) play a pivotal role to amplify antigen-specific immune responses. Antigens that sensitize T cells via antigen-presentation by DCs could enhance the capacity of host immunity to fight infections. In this study, we tested the immunogenic profiles of chicken DCs towards Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina (EaGAPDH). Immunoblot analysis showed that recombinant EaGAPDH (rEaGAPDH) protein was successfully recognized by rat sera generated against rEaGAPDH. Interaction and internalisation of rEaGAPDH by chicken splenic-derived DCs (chSPDCs) was confirmed by immunofluorescence analysis. Flow cytometry revealed that chSPDCs upregulated MHCII, CD1.1, CD11c, CD80, and CD86 cell-surface markers. Moreover, mRNA expressions of DC maturation biomarkers (CCL5, CCR7, and CD83) and TLR signalling genes (TLR15 and MyD88) were also upregulated whereas those of Wnt signalling were non-significant compared to negative controls. rEaGAPDH treatment induced IL-12 and IFN-γ secretion in chSPDCs but had no effect on IL-10 and TGF-β. Likewise, DC-T cell co-culture promoted IFN-γ secretion and the level of IL-4 was unaffected. Proliferation of T cells and their differentiation into CD3+/CD4+ T cells were triggered in chSPDCs-T cells co-culture system. Taken together, rEaGAPDH could promote Th1 polarization by activating both host DCs and T cells and sheds new light on the role of this important molecule which might contribute to the development of new DCs-based immunotherapeutic strategies against coccidiosis.


Author(s):  
Martina Poletti ◽  
Kaline Arnauts ◽  
Marc Ferrante ◽  
Tamas Korcsmaros

Abstract The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of Inflammatory Bowel Disease (IBD), namely Crohn’s disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial crosstalk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications such as patient-derived organoid biobanks for microbial screening and omics technologies are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allowing personalized medicine.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2628-2631 ◽  
Author(s):  
Martin Leverkus ◽  
Henning Walczak ◽  
Alex McLellan ◽  
Hans-Werner Fries ◽  
Gabi Terbeck ◽  
...  

Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.


Sign in / Sign up

Export Citation Format

Share Document