Motor Impairment Differences in Orofacial and Respiratory Speech Control with Cerebellar Disorders

1985 ◽  
Vol 50 (3) ◽  
pp. 306-312 ◽  
Author(s):  
James H. Abbs
2000 ◽  
Vol 42 (01) ◽  
pp. 69 ◽  
Author(s):  
Bernard Dan ◽  
Guy Cheron
Keyword(s):  

2019 ◽  
Vol 374 (1785) ◽  
pp. 20190277 ◽  
Author(s):  
Edgar T. Walters

Chronic pain is considered maladaptive by clinicians because it provides no apparent protective or recuperative benefits. Similarly, evolutionary speculations have assumed that chronic pain represents maladaptive or evolutionarily neutral dysregulation of acute pain mechanisms. By contrast, the present hypothesis proposes that chronic pain can be driven by mechanisms that evolved to reduce increased vulnerability to attack from predators and aggressive conspecifics, which often target prey showing physical impairment after severe injury. Ongoing pain and anxiety persisting long after severe injury continue to enhance vigilance and behavioural caution, decreasing the heightened vulnerability to attack that results from motor impairment and disfigurement, thereby increasing survival and reproduction (fitness). This hypothesis is supported by evidence of animals surviving and reproducing after traumatic amputations, and by complex specializations that enable primary nociceptors to detect local and systemic signs of injury and inflammation, and to maintain low-frequency discharge that can promote ongoing pain indefinitely. Ongoing activity in nociceptors involves intricate electrophysiological and anatomical specializations, including inducible alterations in the expression of ion channels and receptors that produce persistent hyperexcitability and hypersensitivity to chemical signals of injury. Clinically maladaptive chronic pain may sometimes result from the recruitment of this powerful evolutionary adaptation to severe bodily injury. This article is part of the Theo Murphy meeting issue ‘Evolution of mechanisms and behaviour important for pain’.


2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Isabel María Martínez ◽  
Nuria Sempere-Rubio ◽  
Olga Navarro ◽  
Raquel Faubel

Background: The purpose of this study was to collect and analyse the available scientific evidence on the effectiveness of shock wave therapy as a treatment for spasticity. Methods: the search was performed in the following databases: PubMed, PEDro, Cochrane, Embase, and the Virtual Health Library. All publications from November 2009 to November 2019 were selected that included a sample of patients with spasticity and prior suspension of botulinum toxin, to whom shock wave therapy was applied. The methodological quality of the articles was evaluated using the Jadad scale and the pyramid of quality of scientific evidence. Results: 25 studies involving 866 participants with spasticity were selected. The results obtained suggest that shock wave therapy appears to be effective in reducing spasticity levels irrespective of the age of the participants, the type of injury, and the tool used to measure the effect. Conclusions: shock wave therapy reports evidence of improvement in motor function, motor impairment, pain, and functional independence, applied independently of botulinum toxin. However, due to the heterogeneity of the protocols, there is no optimum protocol for its application, and it would be appropriate to gain more high-quality scientific evidence through primary studies.


2021 ◽  
pp. 153944922110326
Author(s):  
Mary E. Stoykov ◽  
Courtney Heidle ◽  
Shamshir Kang ◽  
Lisa Lodesky ◽  
Lindsay E. Maccary ◽  
...  

Sensory priming is a technique to facilitate neuroplasticity and improve motor skills after injury. Common sensory priming modalities include peripheral nerve stimulation/somatosensory electrical stimulation (PNS/SES), transient functional deafferentation (TFD), and vibration. The aim of this study was to determine whether sensory priming with a motor intervention results in improved upper limb motor impairment or function after stroke. PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and EMBASE were the databases used to search the literature in July 2020. This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and recommendations for the Cochrane collaboration. In total, 30 studies were included in the analysis: three studies examined TFD, 16 examined PNS/SES, 10 studied vibration, and one combined the three stimulation techniques. Most studies reported significant improvements for participants receiving sensory priming. Given the low risk, it may be advantageous to use sensory-based priming prior to or concurrent with upper limb training after stroke.


2021 ◽  
Vol 356 ◽  
pp. 109143
Author(s):  
Clayton W. Swanson ◽  
Felix Proessl ◽  
Jaclyn A. Stephens ◽  
Augusto A. Miravalle ◽  
Brett W. Fling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vikram Jakkamsetti ◽  
William Scudder ◽  
Gauri Kathote ◽  
Qian Ma ◽  
Gustavo Angulo ◽  
...  

AbstractTime-to-fall off an accelerating rotating rod (rotarod) is widely utilized to evaluate rodent motor performance. We reasoned that this simple outcome could be refined with additional measures explicit in the task (however inconspicuously) to examine what we call movement sub-structure. Our goal was to characterize normal variation or motor impairment more robustly than by using time-to-fall. We also hypothesized that measures (or features) early in the sub-structure could anticipate the learning expected of a mouse undergoing serial trials. Using normal untreated and baclofen-treated movement-impaired mice, we defined these features and automated their analysis using paw video-tracking in three consecutive trials, including paw location, speed, acceleration, variance and approximate entropy. Spectral arc length yielded speed and acceleration uniformity. We found that, in normal mice, paw movement smoothness inversely correlated with rotarod time-to-fall for the three trials. Greater approximate entropy in vertical movements, and opposite changes in horizontal movements, correlated with greater first-trial time-to-fall. First-trial horizontal approximate entropy in the first few seconds predicted subsequent time-to-fall. This allowed for the separation, after only one rotarod trial, of different-weight, untreated mouse groups, and for the detection of mice otherwise unimpaired after baclofen, which displayed a time-to-fall similar to control. A machine-learning support vector machine classifier corroborated these findings. In conclusion, time-to-fall off a rotarod correlated well with several measures, including some obtained during the first few seconds of a trial, and some responsive to learning over the first two trials, allowing for predictions or preemptive experimental manipulations before learning completion.


2021 ◽  
Vol 11 (7) ◽  
pp. 895
Author(s):  
Karolina A. Bearss ◽  
Joseph F. X. DeSouza

Parkinson’s disease (PD) is a neurodegenerative disease that has a fast progression of motor dysfunction within the first 5 years of diagnosis, showing an annual motor rate of decline of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) between 5.2 and 8.9 points. We aimed to determine both motor and non-motor PD symptom progression while participating in dance classes once per week over a period of three years. Longitudinal data was assessed for a total of 32 people with PD using MDS-UPDRS scores. Daily motor rate of decline was zero (slope = 0.000146) in PD-Dancers, indicating no motor impairment, whereas the PD-Reference group showed the expected motor decline across three years (p < 0.01). Similarly, non-motor aspects of daily living, motor experiences of daily living, and motor complications showed no significant decline. A significant group (PD-Dancers and PD-Reference) by days interaction showed that PD who train once per week have less motor impairment (M = 18.75) than PD-References who do not train (M = 24.61) over time (p < 0.05). Training is effective at slowing both motor and non-motor PD symptoms over three years as shown in decreased scores of the MDS-UPDRS.


2021 ◽  
pp. 219256822199480
Author(s):  
Alvaro Silva González ◽  
Rafael Llombart-Blanco ◽  
Marcela Gallegos Angulo ◽  
Carlos Villas Tomé ◽  
Matías Alfonso Olmos-García

Study Design: Animal experimental model. Objective: To study the clinical behavior and histological changes in the spinal cord, nerve roots and perivertebral muscles of the spine after induced leakage of polymethylmethacrylate (PMMA) loaded with antiblastic drugs during vertebroplasty in an animal model of pigs. Methods: We performed vertebroplasty on 25 pigs. The animals were divided into 3 groups: vertebroplasty with PMMA alone (control group), vertebroplasty with PMMA loaded with methotrexate (MTX) and vertebroplasty with PMMA loaded with cisplatin (CYS). At 2 vertebral levels, epidural and prevertebral, massive cement leaks were induced. Animals were evaluated daily. Two weeks later, the pigs were sacrificed, and the tissues that came in contact with the cement were analyzed. Results: The clinical results for each of the groups were reported. The control group had no clinical alterations. In the MTX group, 2 pigs died before 1 week due to pneumonitis. In the CYS group, 4 animals had motor impairment, and 3 of the 4 had paraplegia. The histological results were as follows: the control and MTX groups showed synovial metaplasia, inflammatory reaction, crystal deposits, and giant cell reaction in the dura mater and muscle and all the animals in the CYS group had spinal cord and muscular necrosis. Conclusions: Massive cement leak after vertebroplasty with PMMA loaded with cisplatin is extremely toxic to the spinal cord and muscles around the spine. Therefore, its use cannot be recommended for the treatment of vertebral metastases. Using PMMA loaded with methotrexate seems to be a safe procedure, but further research is needed.


2021 ◽  
Vol 22 (13) ◽  
pp. 6772
Author(s):  
Michele Malaguarnera ◽  
Tiziano Balzano ◽  
Mari Carmen Castro ◽  
Marta Llansola ◽  
Vicente Felipo

Cognitive and motor impairment in minimal hepatic encephalopathy (MHE) are mediated by neuroinflammation, which is induced by hyperammonemia and peripheral inflammation. GABAergic neurotransmission in the cerebellum is altered in rats with chronic hyperammonemia. The mechanisms by which hyperammonemia induces neuroinflammation remain unknown. We hypothesized that GABAA receptors can modulate cerebellar neuroinflammation. The GABAA antagonist bicuculline was administrated daily (i.p.) for four weeks in control and hyperammonemic rats. Its effects on peripheral inflammation and on neuroinflammation as well as glutamate and GABA neurotransmission in the cerebellum were assessed. In hyperammonemic rats, bicuculline decreases IL-6 and TNFα and increases IL-10 in the plasma, reduces astrocyte activation, induces the microglia M2 phenotype, and reduces IL-1β and TNFα in the cerebellum. However, in control rats, bicuculline increases IL-6 and decreases IL-10 plasma levels and induces microglial activation. Bicuculline restores the membrane expression of some glutamate and GABA transporters restoring the extracellular levels of GABA in hyperammonemic rats. Blocking GABAA receptors improves peripheral inflammation and cerebellar neuroinflammation, restoring neurotransmission in hyperammonemic rats, whereas it induces inflammation and neuroinflammation in controls. This suggests a complex interaction between GABAergic and immune systems. The modulation of GABAA receptors could be a suitable target for improving neuroinflammation in MHE.


Sign in / Sign up

Export Citation Format

Share Document