In vivo induction of functional FcγRI (CD64) on neutrophils and modulation of blood cytokine mRNA levels in cancer patients treated with G-CSF (rMetHuG-CSF)

1998 ◽  
Vol 100 (3) ◽  
pp. 550-556 ◽  
Author(s):  
Jean M. Michon ◽  
Alain Gey ◽  
Sandrine Moutel ◽  
Eric Tartour ◽  
Valerie Meresse ◽  
...  
1995 ◽  
Vol 31 ◽  
pp. 6
Author(s):  
R.J. Vandebriel ◽  
M.P. Scott ◽  
J.A.H. Wijnands ◽  
L. Van Bree ◽  
C. Meredith ◽  
...  

2020 ◽  
Author(s):  
Takafumi Minato ◽  
Midori Hoshizaki ◽  
Tomokazu Yamaguchi ◽  
Jianbo An ◽  
Mayumi Niiyama ◽  
...  

Abstract Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is the carboxypeptidase to degrade angiotensin II (Ang II) to angiotensin 1-7 and improves the pathologies of cardiovascular disease and acute lung injury. To address whether the carboxypeptidase enzymatic activity of ACE2 is protective against COVID-19, we investigated the effects of B38-CAP, an ACE2-like enzyme, on SARS-CoV-2-induced lung injury. Expression of ACE2 protein was significantly downregulated in the lungs of SARS-CoV-2-infected hamsters. Recombinant S1 domain or receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein also directly downregulated ACE2 expression and elevated Ang II levels and considerably worsened acid-induced lung injury in hamsters. Treatment with B38-CAP downregulated Spike RBD-induced high Ang II levels, severe inflammation and pulmonary edema through its ACE2-like enzymatic activity. Consistently, elevated cytokine mRNA levels and impaired lung functions were improved by B38-CAP treatment. Moreover, in SARS-CoV-2-infected humanized ACE2 transgenic mice, B38-CAP significantly improved the pathologies of lung injury, alleviated the cytokine storms and downregulated viral RNA levels. These results provide the first experimental in vivo evidence that increasing ACE2-like enzymatic activity is a potential and powerful therapeutic strategy for lung pathologies in COVID-19.


Author(s):  
Ranjani Rajasekaran ◽  
J. John Kirubaharan ◽  
M. Vidhya ◽  
P. Shilpa and N. Daniel Joy Chandran

Knowledge on the influence of pro-inflammatory cytokine and apoptotic gene mRNA levels in the pathogenesis of Indian field isolates of Newcastle disease virus (NDV) is little. In this study, cytokine mRNA levels were elucidated in spleen of chickens (in-vivo) and chicken embryo fibroblast cells (in-vitro) infected with lentogenic D58 strain and viscerotropic velogenic D165 isolate until five days post infection (dpi). In spleen of chickens infected with D165, maximum upregulation of pro-inflammatory cytokines (IL-1b, IL-6, TNF-a), chemokine (IL-8) and apoptotic gene (Caspase-8) at 3dpi correlated with the onset of severe clinical signs and necrotic histopathological lesions in spleen, proventriculus, intestine and caecal tonsil of chickens. Similarly, in CEF cells infected with D165, upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels correlated with the appearance of CPE. In spleen of chickens and CEF cells infected with D58, there was comparatively minimal upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels which did not cause histopathological changes in tissues and CPE formation in CEF cells. In both in-vivo and in-vitro systems, upregulation of anti-inflammatory cytokine IL-10 showed inhibitory effects on the mRNA levels of pro-inflammatory cytokines. Thus, this study reports variation in the cytokine mRNA levels elucidated in response to two different pathotypes isolated from India and associates the same with the clinical signs and pathological lesions produced during the course of ND. 


2021 ◽  
Author(s):  
Takafumi Minato ◽  
Midori Hoshizaki ◽  
Tomokazu Yamaguchi ◽  
Jianbo An ◽  
Mayumi Niiyama ◽  
...  

Abstract Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is the carboxypeptidase to degrade angiotensin II (Ang II) to angiotensin 1-7 and improves the pathologies of cardiovascular disease and acute lung injury. To address whether the carboxypeptidase enzymatic activity of ACE2 is protective against COVID-19, we investigated the effects of B38-CAP, an ACE2-like enzyme, on SARS-CoV-2-induced lung injury. Expression of ACE2 protein was significantly downregulated in the lungs of SARS-CoV-2-infected hamsters. Recombinant S1 domain or receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein also directly downregulated ACE2 expression and elevated Ang II levels and considerably worsened acid-induced lung injury in hamsters. Treatment with B38-CAP downregulated Spike RBD-induced high Ang II levels, severe inflammation and pulmonary edema through its ACE2-like enzymatic activity. Consistently, elevated cytokine mRNA levels and impaired lung functions were improved by B38-CAP treatment. Moreover, in SARS-CoV-2-infected humanized ACE2 transgenic mice, B38-CAP significantly improved the pathologies of lung injury, alleviated the cytokine storms and downregulated viral RNA levels. These results provide the first experimental in vivo evidence that increasing ACE2-like enzymatic activity is a potential and powerful therapeutic strategy for lung pathologies in COVID-19.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 20 (9) ◽  
pp. 689-699
Author(s):  
Xuemeng Lei ◽  
Xukun Li ◽  
Hongyan Chen ◽  
Zhihua Liu

Background: Ubiquitin specific protease 48 (USP48) is a member of the deubiquitinating enzymes (DUBs) family. However, the function of USP48 in ovarian cancer remains unclear. Objective: The present study reveals that USP48 knockdown could significantly inhibit cell migration and invasion in ES2, 3AO and A2780 cells, without affecting cell proliferation. Methods: After carboplatin (CBP) treatment, the USP48 ablation increases the apoptosis rate, and the cleaved PARP and cleaved caspase 3 expression levels in ES2, 3AO and A2780 cells. The subcutaneous tumor and intraperitoneally injected experiments demonstrated that the USP48 knockdown significantly increases responsiveness to CBP, and alleviates the metastasis in vivo. Meanwhile, USP48 deficiency results in the improved survival of mice. Results: Finally, the analysis of clinical samples and the TCGA and Kaplan-Meier Plot database revealed that the high expression of USP48 in ovarian cancer patients is associated with poor survival and resistance to CBP therapy. Conclusion: In summary, USP48 may be a potential therapeutic target for ovarian cancer patients.


2001 ◽  
Vol 2 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Tara C Brutzki ◽  
Myron J Kulczycky ◽  
Leslie Bardossy ◽  
Bryan J Clarke ◽  
Morris A Blajchman

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document