Pro-inflammatory cytokine and apoptotic gene mRNA levels against lentogenic and velogenic Newcastle disease virus pathotypes in in-vivo and in-vitro biological systems

Author(s):  
Ranjani Rajasekaran ◽  
J. John Kirubaharan ◽  
M. Vidhya ◽  
P. Shilpa and N. Daniel Joy Chandran

Knowledge on the influence of pro-inflammatory cytokine and apoptotic gene mRNA levels in the pathogenesis of Indian field isolates of Newcastle disease virus (NDV) is little. In this study, cytokine mRNA levels were elucidated in spleen of chickens (in-vivo) and chicken embryo fibroblast cells (in-vitro) infected with lentogenic D58 strain and viscerotropic velogenic D165 isolate until five days post infection (dpi). In spleen of chickens infected with D165, maximum upregulation of pro-inflammatory cytokines (IL-1b, IL-6, TNF-a), chemokine (IL-8) and apoptotic gene (Caspase-8) at 3dpi correlated with the onset of severe clinical signs and necrotic histopathological lesions in spleen, proventriculus, intestine and caecal tonsil of chickens. Similarly, in CEF cells infected with D165, upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels correlated with the appearance of CPE. In spleen of chickens and CEF cells infected with D58, there was comparatively minimal upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels which did not cause histopathological changes in tissues and CPE formation in CEF cells. In both in-vivo and in-vitro systems, upregulation of anti-inflammatory cytokine IL-10 showed inhibitory effects on the mRNA levels of pro-inflammatory cytokines. Thus, this study reports variation in the cytokine mRNA levels elucidated in response to two different pathotypes isolated from India and associates the same with the clinical signs and pathological lesions produced during the course of ND. 

2013 ◽  
Vol 7 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Pedro Saul Lipszyc ◽  
Graciela Alicia Cremaschi ◽  
María Zorrilla Zubilete ◽  
Maria Laura Aón Bertolino ◽  
Francisco Capani ◽  
...  

The pathogenesis of atherosclerosis includes the assignment of a critical role to cells of the monocyte/macrophage lineage and to pro-inflammatory cytokines. Niacin is known to improve lipid metabolism and to produce beneficial modification of cardiovascular risk factors. The aim of this work was to investigate if Niacin is able to modulate pro-inflammatory cytokine production in macrophages in a murine model of atherosclerosis. For this purpose C57Bl/6J mice fed with atherogenic diet (AGD) or with conventional chow diet were used. The AGD group showed an increase in body weight and in total plasma cholesterol, with no differences in triglyceride or HDL levels. Lesions in arterial walls were observed. The characterization of Niacin receptor showed an increase in the receptor number of macrophages from the AGD group. Macrophages from control and AGD animals treated in vitro with an inflammatory stimulus showed elevated levels of IL-6, IL-1 and TNF-α, that were even higher in macrophages from AGD mice. Niacin was able to decrease the production of pro-inflammatory cytokines in stimulated macrophages. Similar effect of Niacin was observed in an in vivo model of inflammation. These results show an attenuating inflammatory mechanism for this therapeutic agent and would point out its potential action in plaque stabilization and in the prevention of atherosclerosis progression. Furthermore, the present results provide the basis for future studies on the potential contribution of Niacin to anti-inflammatory therapies.


2011 ◽  
Vol 26 (S2) ◽  
pp. 2091-2091
Author(s):  
A. Harkin ◽  
T.J. Connor

Considering the evidence that pro-inflammatory cytokines play a causal role in depressive illness, the ability of antidepressants to induce anti-inflammatory effects is a subject of considerable interest. In an in vivo context we observe that antidepressants that enhance noradrenaline availability are the most effective anti-inflammatory agents; a fact consistent with the established anti-inflammatory actions of noradrenaline. Specifically, we have observed that noradrenaline reuptake inhibitors (NRIs) inhibit microglial activation and inhibit expression of pro-inflammatory cytokines (IL-1beta and TNF-alpha), iNOS, and inflammatory chemokines (IP-10 and RANTES) in rat brain following a systemic inflammatory challenge. These in vivo anti-inflammatory actions of NRIs are mimicked by in vitro exposure of primary glial cells to noradrenaline, but not by in vitro exposure of glial cells to the drugs themselves. These data suggest that NRIs promote an anti-inflammatory environment in rat brain in vivo by increasing noradrenaline availability at glial cells. We have also observed that even in the absence of any overt inflammation, chronic treatment with the NRI reboxetine promotes an anti-inflammatory phenotype in the CNS characterised by reduced expression of pro-inflammatory cytokine IFN-gamma, and increased expression of the anti-inflammatory cytokine IL-10. Current experiments are focused on the activation of the inflammatory response system in animal models of depression secondary to inflammation. The models are used subsequently to assess the anti-inflammatory effects of antidepressants in vivo.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


2021 ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background:Inflammatory osteolysis is a major complication of total joint replacement surgery that can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of pro-inflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (Porous Se@SiO2 nanospheres) for the management of inflammatory osteolysis. Results: Macrophage-membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) can attenuate lipopolysaccharide (LPS)-induced inflammatory osteolysis by a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduce toxin levels and neutralize pro-inflammatory cytokines. Moreover, the release of Se can induce the polarization of macrophages toward the anti-inflammatory M2-phenotype. These effects are mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase(ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduces the inhibition of osteogenic differentiation caused by pro-inflammation cytokines, confirmed through in vitro and in vivo experiments.Conclusion: Our findings suggest that M-Se@SiO2 has an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 is a promising engineered nano-platform for the treatment of osteolysis arising after arthroplasty.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P<0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


Author(s):  
Bruna Lima Correa ◽  
Nadia El Harane ◽  
Ingrid Gomez ◽  
Hocine Rachid Hocine ◽  
José Vilar ◽  
...  

Abstract Aims The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. Methods and results Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. Conclusions EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109387 ◽  
Author(s):  
Malin Wennström ◽  
Shorena Janelidze ◽  
Cecilie Bay-Richter ◽  
Lennart Minthon ◽  
Lena Brundin

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


2021 ◽  
Vol 11 ◽  
Author(s):  
Leon Islas-Weinstein ◽  
Brenda Marquina-Castillo ◽  
Dulce Mata-Espinosa ◽  
Iris S. Paredes-González ◽  
Jaime Chávez ◽  
...  

The cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) in vivo and in its causative agent Mycobacterium tuberculosis (Mtb) has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease. In addition, we performed immunohistochemistry in lung tissue to determine the cellular expression of cholinergic system components, and then administered nicotinic receptor (nAChR) antagonists to validate their effect on lung bacterial burden, inflammation, and pro-inflammatory cytokines. Finally, we subjected Mtb cultures to colorimetric analysis to reveal the production of ACh and the effect of ACh and nAChR antagonists on Mtb growth. Our results show high concentrations of ACh and expression of its synthesizing enzyme choline acetyltransferase (ChAT) during early infection in lung epithelial cells and macrophages. During late progressive TB, lung ACh upregulation was even higher and coincided with ChAT and α7 nAChR subunit expression in immune cells. Moreover, the administration of nAChR antagonists increased pro-inflammatory cytokines, reduced bacillary loads and synergized with antibiotic therapy in multidrug resistant TB. Finally, in vitro studies revealed that the bacteria is capable of producing nanomolar concentrations of ACh in liquid culture. In addition, the administration of ACh and nicotinic antagonists to Mtb cultures induced or inhibited bacterial proliferation, respectively. These results suggest that Mtb possesses a cholinergic system and upregulates the lung non-neuronal cholinergic system, particularly during late progressive TB. The upregulation of the cholinergic system during infection could aid both bacterial growth and immunomodulation within the lung to favor disease progression. Furthermore, the therapeutic efficacy of modulating this system suggests that it could be a target for treating the disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1626-1626
Author(s):  
Dror Mevorach ◽  
Veronique Amor ◽  
Yehudith Shabat

Abstract Background: Chimeric antigen receptor (CAR)-modified T cells with specificity against CD19 have demonstrated dramatic promise against highly refractory hematologic malignancies. Clinical responses with complete remission rates as high as 90% have been reported in children and adults with relapsed/refractory acute lymphoblastic leukemia (ALL). However, very significant toxicity has been observed and as many as 30% in average developing severe forms of CRS and possibly related neurotoxicity. CRS is occurring due to large secretion of pro-inflammatory cytokines, mainly from macrophages/monocytes, and resembles macrophage-activating syndrome and hemophagocytosis in response to CAR T-secreting IFN-g and possibly additional cytokines. To better understand the mechanisms leading to CRS and to treat or prevent it, we have developed in vitro and in vivo models of CRS with and without CAR-modified T cells. Early apoptotic cells that have been successfully tested for the prevention of acute GVHD, including in 7 ALL patients, were tested in these models for their effect on cytokines and CAR T cell cytotoxicity. Methods: CD19-expressing HeLa cells were used alone or with co-incubation with human macrophages for in vitro experiments and intraperitoneal experiments. Raji was used in vivo for leukemia induction. LPS and IFN-γ were used to trigger additional cytokine release. CD19-specific CAR-modified cells were used (ProMab) for anti-tumor effect against CD19-bearing cells. Cytotoxicity assay was examined in vivo using 7-AAD with flow cytometry and in vitro by survival curves and analysis of tumor load in bone marrow and liver. CRS occurred spontaneously or in response to LPS and IFN-γ. Mouse IL-10, IL-1β, IL-2, IP-10, IL-4, IL-5, IL-6, IFNα, IL-9, IL-13, IFN-γ, IL-12p70, GM-CSF, TNF-α, MIP-1α, MIP-1β, IL-17A, IL-15/IL-15R, and IL-7, as well as 32 human cytokines were evaluated by Luminex technology using the MAPIX system analyzer (Mereck Millipore) and MILLIPLEX Analyst software (Merek Millipore). Mouse IL-6Rα, MIG (CXCL9), and TGF-β1 were evaluated by Quantikine ELISA (R&D systems). Bone marrow and liver were evaluated using flow cytometry and immunohistochemistry. The IFN-γ effect was evaluated by STAT1 phosphorylation and biological products. Human macrophages and dendritic cells were generated from monocytes. Early apoptotic cells were produced as shown in GVHD clinical trial; at least 50% of cells were annexin V-positive and less than 5% were PI-positive. Results: Apoptotic cells had no negative effect in vitro or in vivo on CAR-modified T cells with specificity against CD19. There were comparable E/T ratios for CAR T in the presence or absence of apoptotic cells in vitro, and comparable survival curves in vivo. On the other hand, significant downregulation (p<0.01) of pro-inflammatory cytokines, including IL-6, IP-10, TNF-a, MIP-1α, MIP-1β, was documented. IFN-γ was not downregulated, but its effect on macrophages and dendritic cells was inhibited at the level of phosphorylated STAT1 and IFN-γ-induced expression of CXCL10 and CXCL9 was reduced. Conclusion: CRS evolves from several factors, including tumor biology, interaction with monocytes/macrophages/dendritic cells, and as a response to the CAR T cell effect and expansion. Apoptotic cells decrease pro-inflammatory cytokines that originate from innate immunity and inhibit the IFN-γ effect on monocyte/macrophages/ dendritic cells without harming IFN-γ levels or CAR-T cytotoxicity. Disclosures Mevorach: Enlivex: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Amor:Enlivex: Employment. Shabat:Enlivex: Employment.


Sign in / Sign up

Export Citation Format

Share Document