Effect of exposure in vivo to tributyltin oxide (TBTO) and ozone on cytokine mRNA levels

1995 ◽  
Vol 31 ◽  
pp. 6
Author(s):  
R.J. Vandebriel ◽  
M.P. Scott ◽  
J.A.H. Wijnands ◽  
L. Van Bree ◽  
C. Meredith ◽  
...  
1998 ◽  
Vol 100 (3) ◽  
pp. 550-556 ◽  
Author(s):  
Jean M. Michon ◽  
Alain Gey ◽  
Sandrine Moutel ◽  
Eric Tartour ◽  
Valerie Meresse ◽  
...  

2020 ◽  
Author(s):  
Takafumi Minato ◽  
Midori Hoshizaki ◽  
Tomokazu Yamaguchi ◽  
Jianbo An ◽  
Mayumi Niiyama ◽  
...  

Abstract Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is the carboxypeptidase to degrade angiotensin II (Ang II) to angiotensin 1-7 and improves the pathologies of cardiovascular disease and acute lung injury. To address whether the carboxypeptidase enzymatic activity of ACE2 is protective against COVID-19, we investigated the effects of B38-CAP, an ACE2-like enzyme, on SARS-CoV-2-induced lung injury. Expression of ACE2 protein was significantly downregulated in the lungs of SARS-CoV-2-infected hamsters. Recombinant S1 domain or receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein also directly downregulated ACE2 expression and elevated Ang II levels and considerably worsened acid-induced lung injury in hamsters. Treatment with B38-CAP downregulated Spike RBD-induced high Ang II levels, severe inflammation and pulmonary edema through its ACE2-like enzymatic activity. Consistently, elevated cytokine mRNA levels and impaired lung functions were improved by B38-CAP treatment. Moreover, in SARS-CoV-2-infected humanized ACE2 transgenic mice, B38-CAP significantly improved the pathologies of lung injury, alleviated the cytokine storms and downregulated viral RNA levels. These results provide the first experimental in vivo evidence that increasing ACE2-like enzymatic activity is a potential and powerful therapeutic strategy for lung pathologies in COVID-19.


Author(s):  
Ranjani Rajasekaran ◽  
J. John Kirubaharan ◽  
M. Vidhya ◽  
P. Shilpa and N. Daniel Joy Chandran

Knowledge on the influence of pro-inflammatory cytokine and apoptotic gene mRNA levels in the pathogenesis of Indian field isolates of Newcastle disease virus (NDV) is little. In this study, cytokine mRNA levels were elucidated in spleen of chickens (in-vivo) and chicken embryo fibroblast cells (in-vitro) infected with lentogenic D58 strain and viscerotropic velogenic D165 isolate until five days post infection (dpi). In spleen of chickens infected with D165, maximum upregulation of pro-inflammatory cytokines (IL-1b, IL-6, TNF-a), chemokine (IL-8) and apoptotic gene (Caspase-8) at 3dpi correlated with the onset of severe clinical signs and necrotic histopathological lesions in spleen, proventriculus, intestine and caecal tonsil of chickens. Similarly, in CEF cells infected with D165, upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels correlated with the appearance of CPE. In spleen of chickens and CEF cells infected with D58, there was comparatively minimal upregulation of pro-inflammatory cytokine and apoptotic gene mRNA levels which did not cause histopathological changes in tissues and CPE formation in CEF cells. In both in-vivo and in-vitro systems, upregulation of anti-inflammatory cytokine IL-10 showed inhibitory effects on the mRNA levels of pro-inflammatory cytokines. Thus, this study reports variation in the cytokine mRNA levels elucidated in response to two different pathotypes isolated from India and associates the same with the clinical signs and pathological lesions produced during the course of ND. 


2021 ◽  
Author(s):  
Takafumi Minato ◽  
Midori Hoshizaki ◽  
Tomokazu Yamaguchi ◽  
Jianbo An ◽  
Mayumi Niiyama ◽  
...  

Abstract Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is the carboxypeptidase to degrade angiotensin II (Ang II) to angiotensin 1-7 and improves the pathologies of cardiovascular disease and acute lung injury. To address whether the carboxypeptidase enzymatic activity of ACE2 is protective against COVID-19, we investigated the effects of B38-CAP, an ACE2-like enzyme, on SARS-CoV-2-induced lung injury. Expression of ACE2 protein was significantly downregulated in the lungs of SARS-CoV-2-infected hamsters. Recombinant S1 domain or receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein also directly downregulated ACE2 expression and elevated Ang II levels and considerably worsened acid-induced lung injury in hamsters. Treatment with B38-CAP downregulated Spike RBD-induced high Ang II levels, severe inflammation and pulmonary edema through its ACE2-like enzymatic activity. Consistently, elevated cytokine mRNA levels and impaired lung functions were improved by B38-CAP treatment. Moreover, in SARS-CoV-2-infected humanized ACE2 transgenic mice, B38-CAP significantly improved the pathologies of lung injury, alleviated the cytokine storms and downregulated viral RNA levels. These results provide the first experimental in vivo evidence that increasing ACE2-like enzymatic activity is a potential and powerful therapeutic strategy for lung pathologies in COVID-19.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2021 ◽  
Vol 9 (1) ◽  
pp. e001905
Author(s):  
Jung-Hee Hong ◽  
Dae-Hee Kim ◽  
Moon-Kyu Lee

IntroductionThe concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels.Research design and methodsTo investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function.ResultsChronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats.ConclusionThese results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


Sign in / Sign up

Export Citation Format

Share Document