scholarly journals Transcription of the interleukin 4 gene is regulated by multiple promoter elements.

1993 ◽  
Vol 177 (6) ◽  
pp. 1663-1674 ◽  
Author(s):  
M D Todd ◽  
M J Grusby ◽  
J A Lederer ◽  
E Lacy ◽  
A H Lichtman ◽  
...  

Activation of T helper cell 1 (Th1) and Th2 results in transcription of the interleukin 2 (IL-2) and IL-4 cytokine genes, respectively. Whereas many of the regulatory elements and factors responsible for IL-2 transcription in T cells are well defined, little is known about parallel mechanisms that drive transcription of the IL-4 gene. Here we have analyzed the murine IL-4 promoter, both in vivo and in a Th2 clone. 3 kb of IL-4 upstream sequence is shown to be sufficient to achieve tissue-specific and inducible expression of a thymidine kinase reporter gene in vivo in a manner that mirrors the expression of endogenous IL-4. Tissue-specific and inducible expression is also demonstrated in a Th2 clone, but not in a B cell line. Deletional and mutational analysis of the IL-4 promoter demonstrated that sequences from -100 to -28 were necessary for a transcriptional response to Concanavalin A or anti-CD3 monoclonal antibody. An overlapping, yet smaller region, spanning the sequences from -60 to -28 bp was shown to be required for the response to ionomycin. Mutation of an 8-bp region from -43 to -35 of the IL-4 promoter completely abrogated IL-4 gene transcription in response to all stimuli tested. In addition, our results show that the effects of the immunosuppressive agent Cyclosporin A map to the same DNA sequences as the positive control elements. These results identify DNA sequences that are functionally important for the control of IL-4 gene transcription both in vivo and in vitro. Although these sequences are highly conserved in the human and murine IL-4 genes, they are largely not present in the IL-2 enhancer complex. Thus, cytokine-specific cis-acting elements may be one mechanism by which these two cytokine genes are differentially regulated.

2016 ◽  
Vol 64 (3) ◽  
pp. 735-739 ◽  
Author(s):  
Chandrika S Gowda ◽  
Chunhua Song ◽  
Yali Ding ◽  
Malika Kapadia ◽  
Sinisa Dovat

Protein signaling and regulation of gene expression are the two major mechanisms that regulate cellular proliferation in leukemia. Discerning the function of these processes is essential for understanding the pathogenesis of leukemia and for developing the targeted therapies. Here, we provide an overview of one of the mechanisms that regulates gene transcription in leukemia. This mechanism involves the direct interaction between Casein Kinase II (CK2) and the Ikaros transcription factor. Ikaros (IKZF1) functions as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Impaired Ikaros function results in the development of high-risk leukemia. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. In vivo, Ikaros is a target for CK2, a pro-oncogenic kinase. CK2 directly phosphorylates Ikaros at multiple amino acids. Functional experiments showed that CK2-mediated phosphorylation of Ikaros, regulates Ikaros’ DNA binding affinity, subcellular localization and protein stability. Recent studies revealed that phosphorylation of Ikaros by CK2 regulates Ikaros binding and repression of the terminal deoxytransferase (TdT) gene in normal thymocytes and in T-cell ALL. Available data suggest that the oncogenic activity of CK2 in leukemia involves functional inactivation of Ikaros and provide a rationale for CK2 inhibitors as a potential treatment for ALL.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3601-3609 ◽  
Author(s):  
Karen Y. Larbi ◽  
Andrew R. Allen ◽  
Frederick W. K. Tam ◽  
Dorian O. Haskard ◽  
Roy R. Lobb ◽  
...  

Abstract Eosinophil accumulation has been associated with the pathogenesis of numerous allergic inflammatory disorders. Despite the great interest in this response, many aspects of eosinophil accumulation remain unknown. This is particularly true with respect to tissue-specific mechanisms that may regulate the accumulation of eosinophils in different organs. This study addressed this issue by investigating and comparing the roles of α4-integrins and vascular cell adhesion molecule 1 (VCAM-1) adhesion pathways in interleukin 4 (IL-4)–induced eosinophil accumulation in 2 different rat models of inflammation, namely pleural and cutaneous inflammation. Similar to our previous findings in studies in rat skin, locally administered IL-4 induced a time- and dose-dependent accumulation of eosinophils in rat pleural cavities, a response that was associated with generation of the chemokine eotaxin. The IL-4–induced eosinophil accumulation in skin and pleural cavities was totally inhibited by an antirat α4-integrins monoclonal antibody (mAb) (TA-2). In contrast, whereas an antirat VCAM-1 mAb (5F10) totally blocked the response in skin, IL-4–induced eosinophil accumulation in rat pleural cavities was not affected by VCAM-1 blockade. A radiolabeled mAb technique demonstrated that endothelial-cell VCAM-1 expression was induced in response to IL-4 in both skin and pleural membrane. The results indicate that although endothelial-cell VCAM-1 is present in skin and pleura, a functional role for it in IL-4–induced eosinophil accumulation was evident only in skin. These findings suggest the existence of tissue-specific adhesive mechanisms in regulating leukocyte migration in vivo and demonstrate a dissociation between VCAM-1 expression and eosinophil accumulation.


2015 ◽  
Vol 35 (12) ◽  
pp. 2165-2172 ◽  
Author(s):  
Jonathon Marks-Bluth ◽  
Anchit Khanna ◽  
Vashe Chandrakanthan ◽  
Julie Thoms ◽  
Thomas Bee ◽  
...  

The bone morphogenetic protein (BMP)/SMAD signaling pathway is a critical regulator of angiogenic sprouting and is involved in vascular development in the embryo. SMAD1 and SMAD5, the core mediators of BMP signaling, are vital for this activity, yet little is known about their transcriptional regulation in endothelial cells. Here, we have integrated multispecies sequence conservation, tissue-specific chromatin,in vitroreporter assay, andin vivotransgenic data to identify and validateSmad1+63 and theSmad5promoter as tissue-specificcis-regulatory elements that are active in the developing endothelium. The activity of these elements in the endothelium was dependent on highly conserved ETS, GATA, and E-box motifs, and chromatin immunoprecipitation showed high levels of enrichment of FLI1, GATA2, and SCL at these sites in endothelial cell lines and E11 dorsal aortasin vivo. Knockdown of FLI1 and GATA2 but not SCL reduced the expression of SMAD1 and SMAD5 in endothelial cellsin vitro. In contrast, CD31+cKit−endothelial cells harvested from embryonic day 9 (E9) aorta-gonad-mesonephros (AGM) regions of GATA2 null embryos showed reducedSmad1but notSmad5transcript levels. This is suggestive of a degree ofin vivoselection where, in the case of reduced SMAD1 levels, endothelial cells with more robust SMAD5 expression have a selective advantage.


1989 ◽  
Vol 9 (12) ◽  
pp. 5315-5323 ◽  
Author(s):  
J Imbert ◽  
M Zafarullah ◽  
V C Culotta ◽  
L Gedamu ◽  
D Hamer

Metallothionein (MT) gene promoters in higher eucaryotes contain multiple metal regulatory elements (MREs) that are responsible for the metal induction of MT gene transcription. We identified and purified to near homogeneity a 74-kilodalton mouse nuclear protein that specifically binds to certain MRE sequences. This protein, MBF-I, was purified employing as an affinity reagent a trout MRE that is shown to be functional in mouse cells but which lacks the G+C-rich and SP1-like sequences found in many mammalian MT gene promoters. Using point-mutated MREs, we showed that there is a strong correlation between DNA binding in vitro and MT gene regulation in vivo, suggesting a direct role of MBF-I in MT gene transcription. We also showed that MBF-I can induce MT gene transcription in vitro in a mouse extract and that this stimulation requires zinc.


2004 ◽  
Vol 379 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Sarita NEGI ◽  
Saurabh K. SINGH ◽  
Nirupma PATI ◽  
Vikas HANDA ◽  
Ruchi CHAUHAN ◽  
...  

The apo(a) [apolipoprotein(a)] gene is responsible for variations in plasma lipoprotein(a), high levels of which are a risk factor for atherosclerosis and myocardial infarction. The apo(a) promoter stimulates the expression of reporter genes in HepG2 cells, but not in HeLa cells. In the present study, we demonstrate that the 1.4 kb apo(a) promoter comprises two composite regulatory regions: a distal negative regulatory module (positions −1432 to −716) and a proximal tissue-specific module (−716 to −616). The distal negative regulatory module contains two strong negative regulatory regions [polymorphic PNR (pentanucleotide repeat region) and NREβ (negative regulatory element β)], which sandwich the postive regulatory region PREβ (positive regulatory element β). The PNR was shown to bind to transcription factors in a tissue-specific manner, whereas the ubiquitous transcription factors hepatocyte nuclear factor 3α and GATA binding protein 4 bound to NREβ to repress gene transcription. The proximal tissue-specific module contains two regulatory elements: an activating region (PREα) that activates transcription in HepG2 cells, and NREα, which is responsible for repressing the apo(a) gene in HeLa cells. NREα binds to a HeLa-specific repressor. These multiple regulatory elements might work co-operatively to finely regulate apo(a) gene expression. Although the tissue-specific module is required for apo(a) gene activation and repression in a tissue-specific manner, the combinatorial interplay of the distal and proximal regulators might define the complex pathway(s) of apo(a) gene regulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4763-4763
Author(s):  
Donghoon Yoon ◽  
Hyojin Kim ◽  
Minyoung Jang ◽  
Jihyun Song ◽  
Gregory E Arnold ◽  
...  

Abstract Hypoxia regulates erythropoiesis and other essential processes via hypoxia-inducible transcription factors (HIFs). HIFs are heterodimers that consist of an α subunit (3 isotypes with significant homology; HIF-1α, HIF-2α, HIF-3α), and a common b-subunit; HIF-1 and HIF-2, in some instances exhibiting tissue- and gene-specific gene regulation. Erythropoietin (EPO) was the first identified HIF-1 target gene with the defined HIF-1 binding sequence. However, subsequent works suggested that HIF-2 also regulates EPO transcription and that there are other regulatory elements of EPO gene (i.e. Kidney Inducible Element KIE, Negative Regulatory Element NRE, and Negative Regulatory Liver specific Element NRLE). In silico analysis of the human EPO genome found two additional potential HIF-binding elements in the KIE and NRE regions. The comparative analysis of phylogenically conserved sequences of human, mouse, dog, and rat Epo genes further refined these mouse Epo gene HIF-binding elements as mKIE, mNRE1, mNRE2, and mNRLE2. We treated mice in hypoxia chamber (8% O2) and monitored changes of Epo mRNA levels in liver, kidney, brain, spleen, and bone marrow. All tested tissues increased Epo transcription during hypoxia. Bone marrow, spleen, kidney, and brain showed a peak of induction of Epo transcript at 3 hours of hypoxia treatment, while liver reached the highest level at 6 hours. Mice were sacrificed and organs were harvested, and in vivo chromatin immunoprecipitation (ChIPs) was performed with antibodies against HIF-1α and HIF- 2α and tissue-specific binding regions were defined. The results from these studies are summarized below. HIF-1 mKIE rnNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp Liver − + − − + − ? ? Kidney − + − − + − + − Brain − + − − − + − + BM − + − − − − − + Splsen − + − − − − − + HIF-2 mKIE mNRE mNRE2 mNRLE2 Norm Hyp Norm Hyp Norm Hyp Norm Hyp “+” denotes presence and “-” absence of binding of HIF-1 and HIF-2, “?” – indicates inconclusive results. “Norm” - normoxia, “Hyp” - hypoxia. Liver − + − − − + − + Kidney + − − − + − ? ? Brain − − − − − − − + BM − − − − − − + − Spleen − + − − − − − + In conclusion, we demonstrate the differential hypoxia-induced binding of HIF-1 and HIF-2 at different HIF binding elements in the tissues known to express Epo. Further studies will be required to define the function of these HIF-1 and HIF-2 binding elements in tissue specific Epo expression and their role in health and disease.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 637-646 ◽  
Author(s):  
V Corbin ◽  
T Maniatis

Abstract The Alcohol dehydrogenase (Adh) genes of two distantly related species, Drosophila melanogaster and Drosophila mulleri, display similar, but not identical, patterns of tissue-specific expression in larvae and adults. The regulatory DNA sequences necessary for wild-type Adh expression in D. mulleri larvae were previously reported. In this paper we present an analysis of the DNA sequences necessary for wild-type Adh expression in D. melanogaster larvae. We show that transcription from the proximal promoter of the melanogaster Adh gene is regulated by a far upstream enhancer and two or more elements near the transcription start site. The enhancer is tissue specific and stimulates transcription to high levels in fat body and to lower levels in midgut and malpighian tubules whether linked to the proximal promoter or to a heterologous promoter. The enhancer activity localized to at least two discrete regions dispersed over more than 1.7 kb of DNA. Deletion of any one of these subregions reduces Adh transcription in all three larval tissues. Similarly, two regions immediately upstream of the proximal promoter start site are necessary for wild-type transcription levels in all three tissues. Thus, each of the identified regulatory elements is sufficient for low levels of Adh gene expression in all three larval tissues, but maximal levels of expression requires the entire set.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Dario Zimmerli ◽  
Costanza Borrelli ◽  
Amaia Jauregi-Miguel ◽  
Simon Söderholm ◽  
Salome Brütsch ◽  
...  

BCL9 and PYGO are β-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of β-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the β-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a β-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/β-catenin-dependent transcriptional complex.


Sign in / Sign up

Export Citation Format

Share Document