Morphometric Study of the beta-cell Volume of the Canine Pancreas with Consideration of the Axis of Tissue Transection

1999 ◽  
Vol 28 (5-6) ◽  
pp. 351-354 ◽  
Author(s):  
M. Govendir ◽  
P. J. Canfield ◽  
D. B. Church
2016 ◽  
Vol 32 (7) ◽  
pp. 675-684 ◽  
Author(s):  
Martin Haupt-Jorgensen ◽  
Karsten Buschard ◽  
Axel K. Hansen ◽  
Knud Josefsen ◽  
Julie Christine Antvorskov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukari Fujita ◽  
Junji Kozawa ◽  
Kenji Fukui ◽  
Hiromi Iwahashi ◽  
Hidetoshi Eguchi ◽  
...  

AbstractPancreatic islet cells have plasticity, such as the abilities to dedifferentiate and transdifferentiate. Islet cell conversion to other characteristic cell is largely determined by transcription factors, but significance of expression patterns of these transcription factors in human islet cells remained unclear. Here, we present the NKX6.1-positive ratio of glucagon-positive cells (NKX6.1+/GCG+ ratio) and the ARX-negative ratio of glucagon-positive cells (ARX−/GCG+ ratio) in 34 patients who were not administered antidiabetic agents. Both of NKX6.1+/GCG+ ratio and ARX−/GCG+ ratio negatively associated with relative beta cell area. And these ratios did not have significant correlation with other parameters including age, body mass index, hemoglobin A1c, fasting plasma glucose level or relative alpha-cell area. Our data demonstrate that these expression ratios of transcription factors in glucagon-positive cells closely correlate with the reduction of beta-cell volume in human pancreas.


2020 ◽  
Vol 13 (12) ◽  
pp. dmm045351
Author(s):  
Urmas Roostalu ◽  
Jacob Lercke Skytte ◽  
Casper Gravesen Salinas ◽  
Thomas Klein ◽  
Niels Vrang ◽  
...  

ABSTRACTDiabetes is characterized by rising levels of blood glucose and is often associated with a progressive loss of insulin-producing beta cells. Recent studies have demonstrated that it is possible to regenerate new beta cells through proliferation of existing beta cells or trans-differentiation of other cell types into beta cells, raising hope that diabetes can be cured through restoration of functional beta cell mass. Efficient quantification of beta cell mass and islet characteristics is needed to enhance drug discovery for diabetes. Here, we report a 3D quantitative imaging platform for unbiased evaluation of changes in islets in mouse models of type I and II diabetes. To determine whether the method can detect pharmacologically induced changes in beta cell volume, mice were treated for 14 days with either vehicle or the insulin receptor antagonist S961 (2.4 nmol/day) using osmotic minipumps. Mice treated with S961 displayed increased blood glucose and insulin levels. Light-sheet imaging of insulin and Ki67 (also known as Mki67)-immunostained pancreata revealed a 43% increase in beta cell volume and 21% increase in islet number. S961 treatment resulted in an increase in islets positive for the cell proliferation marker Ki67, suggesting that proliferation of existing beta cells underlies the expansion of total beta cell volume. Using light-sheet imaging of a non-obese diabetic mouse model of type I diabetes, we also characterized the infiltration of CD45 (also known as PTPRC)-labeled leukocytes in islets. At 14 weeks, 40% of the small islets, but more than 80% of large islets, showed leukocyte infiltration. These results demonstrate how quantitative light-sheet imaging can capture changes in individual islets to help pharmacological research in diabetes.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2132-P
Author(s):  
HIROKI MIZUKAMI ◽  
DANYANG GUO ◽  
KAZUHISA TAKAHASHI ◽  
SHO OSONOI ◽  
SAORI OGASAWARA ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2127-P
Author(s):  
HIROKI MIZUKAMI ◽  
DANYANG GUO ◽  
KAZUHISA TAKAHASHI ◽  
SHO OSONOI ◽  
KAZUHIRO KUDO ◽  
...  

2013 ◽  
Vol 11 (4) ◽  
pp. 186-187
Author(s):  
Inge van der Kroon ◽  
Cathelijne Frielink ◽  
Lieke Joosten ◽  
Desiree Bos ◽  
Maarten Brom ◽  
...  

2019 ◽  
Author(s):  
A. Rao ◽  
E.L. McBride ◽  
G. Zhang ◽  
H. Xu ◽  
T. Cai ◽  
...  

AbstractIt is shown how serial block-face electron microscopy (SBEM) of insulin-secreting beta cells in wild-type mouse pancreatic islets of Langerhans can be used to determine maturation times of secretory granules. Although SBEM captures the beta cell structure at a snapshot in time, the observed ultrastructure can be considered representative of a dynamic equilibrium state of the cells since the pancreatic islets are maintained in culture in approximate homeostasis. It is found that 7.2±1.2% (±st. dev.) of the beta cell volume is composed of secretory granule dense-cores exhibiting angular shapes surrounded by wide (typically ≳100 nm) electron-lucent halos. These organelles are identified as mature granules that store insulin for regulated release through the plasma membrane, with a release time of 96±12 hours, as previously obtained from pulsed 35S-radiolabeling of cysteine and methionine. Analysis of beta cell 3D volumes reveals a subpopulation of secretory organelles without electron-lucent halos, identified as immature secretory granules. Another subpopulation of secretory granules is found with thin (typically ≲30 nm) electron-lucent halos, which are attributed to immature granules that are transforming from proinsulin to insulin by action of prohormone convertases. From the volume ratio of proinsulin in the immature granules to insulin in the mature granules, we estimate that the newly formed immature granules remain in morphologically-defined immature states for an average time of 135±14 minutes, and the immature transforming granules for an average time of 130±17 minutes.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1746 ◽  
Author(s):  
Martin Haupt-Jorgensen ◽  
Laurits Holm ◽  
Knud Josefsen ◽  
Karsten Buschard

Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.


Sign in / Sign up

Export Citation Format

Share Document