Neural network based PID control on NC milling process with high-speed

Author(s):  
Zhang Junhong ◽  
Ni Guangjian ◽  
Zhang Jianping
Author(s):  
B. SUREKHA ◽  
PANDU R. VUNDAVILLI ◽  
M. B. PARAPPAGOUDAR ◽  
K. SHYAM PRASAD

In the present study, forward modeling of high-speed finish milling process has been solved using soft computing. Two different approaches, namely neural network (NN) and fuzzy logic (FL), have been developed to solve the said problem. The performance of NN and FL systems depends on the structure (i.e. number of neurons in the hidden layer, transfer functions, connection weights, etc.) and knowledge base (i.e. rule base and data base), respectively. Here, an approach is proposed to optimize the above-mentioned parameters of NN and FL systems. A binary coded genetic algorithm (GA) has been used for the said purpose. Once optimized, the NN and FL-based models will be able to provide optimal machining parameters online. The developed approaches are found to solve the above problem effectively, and the performances of the developed approaches have been compared among themselves and with that of the results of existing literature.


2011 ◽  
Vol 2-3 ◽  
pp. 3-6
Author(s):  
Ji Li ◽  
Hong Wang ◽  
Hai Long Huang

The traditional PID control in nonlinear system such as high-speed wind tunnel has limitations, and the range of using is limited. The BP neural network has been widely applied to the optimization of the PID controller parameter adjustment. The PID neural network control system is introduced in the conventional PID control, which has advantages such as simple structure, physical meaning clear parameters, but also has a neural network of parallel structure and the function of learning and memory and nonlinear mapping capability. The controller uses BP (error back propagation) algorithm to correct connection weights, through on-line training and learning and make objective function to achieve optimal value. This improvement scheme can not only improve algorithm in the training process, and the convergence speed in the wind tunnel, the control valve control system response speed, high precision, meet the steady-state real-time control requirements.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


1990 ◽  
Vol 26 (20) ◽  
pp. 1739
Author(s):  
N.M. Barnes ◽  
P. Healey ◽  
P. McKee ◽  
A.W. O'Neill ◽  
M.A.Z. Rejmangreene ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098468
Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Yijiang Ma ◽  
Hongxun Fu

The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2685
Author(s):  
Guojin Pei ◽  
Ming Yu ◽  
Yaohui Xu ◽  
Cui Ma ◽  
Houhu Lai ◽  
...  

A compliant constant-force actuator based on the cylinder is an important tool for the contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the traditional proportional–integral–derivative (PID) method for constant force control does not work so well. In this paper, an improved PID control method combining a backpropagation (BP) neural network and the Smith predictor is proposed. Through MATLAB simulation and experimental validation, the results show that the proposed method can shorten the maximum overshoot and the adjustment time compared with traditional the PID method.


Sign in / Sign up

Export Citation Format

Share Document