Review of the use of the Department for Transport value for preventing a fatality in non road-transport systems

Author(s):  
R. Maguire
2020 ◽  
Vol 11 (1) ◽  
pp. 305
Author(s):  
Rubén Escribano-García ◽  
Marina Corral-Bobadilla ◽  
Fátima Somovilla-Gómez ◽  
Rubén Lostado-Lorza ◽  
Ash Ahmed

The dimensions and weight of machines, structures, and components that need to be transported safely by road are growing constantly. One of the safest and most widely used transport systems on the road today due to their versatility and configuration are modular trailers. These trailers have hydraulic pendulum axles that are that are attached in pairs to the rigid platform above. In turn, these modular trailers are subject to limitations on the load that each axle carries, the tipping angle, and the oil pressure of the suspension system in order to guarantee safe transport by road. Optimizing the configuration of these modular trailers accurately and safely is a complex task. Factors to be considered include the load’s characteristics, the trailer’s mechanical properties, and road route conditions including the road’s slope and camber, precipitation and direction, and force of the wind. This paper presents a theoretical model that can be used for the optimal configuration of hydraulic cylinder suspension of special transport by road using modular trailers. It considers the previously mentioned factors and guarantees the safe stability of road transport. The proposed model was validated experimentally by placing a nacelle wind turbine at different points within a modular trailer. The weight of the wind turbine was 42,500 kg and its dimensions were 5133 × 2650 × 2975 mm. Once the proposed model was validated, an optimization algorithm was employed to find the optimal center of gravity for load, number of trailers, number of axles, oil pressures, and hydraulic configuration. The optimization algorithm was based on the iterative and automatic testing of the proposed model for different positions on the trailer and different hydraulic configurations. The optimization algorithm was tested with a cylindrical tank that weighed 108,500 kg and had dimensions of 19,500 × 3200 × 2500 mm. The results showed that the proposed model and optimization algorithm could safely optimize the configuration of the hydraulic suspension of modular trailers in special road transport, increase the accuracy and reliability of the calculation of the load configuration, save time, simplify the calculation process, and be easily implemented.


2021 ◽  
Vol 13 (12) ◽  
pp. 6797
Author(s):  
Peter Mako ◽  
Andrej Dávid ◽  
Patrik Böhm ◽  
Sorin Savu

Sustainability of transport systems is a key issue in transport. The main question is whether high levels of road and railway transport in areas along navigable waterways is an effective solution for this issue. The Danube waterway is an example. Generally, it is not observed that traffic performance is not as high as on the Rhine. This paper deals with the revelation of the available capacity of this waterway based on approximation functions and their comparison with real transport performances. This methodology points to the level of use of waterways. The connection of this model with the production of fossil fuels creates a basis for a case study. The case study in this paper offers a possibility for a sustainable and environmentally friendly transition from road transport to inland water transport on the example of specific transport routes. The main contribution of this paper is a presentation of the application of sustainable models of use transport capacity to increase the share of environmentally friendly and sustainable inland water transport. The conclusion based on the case study and materials is that the available capacity of inland water transport on the Danube could support the transition of traffic performances to sustainable and environmentally friendly means of transport.


2018 ◽  
Vol 19 (12) ◽  
pp. 238-241
Author(s):  
Katarzyna Sosik

The article presents the concept of implementing a network of average speed measurements in the West Pomeranian. The author focused on solutions of Intelligent Transport Systems to improve the safety of road transport. The first part of the article discusses the state of road traffic safety in the West Pomeranian. In the next part, the solutions of Intelligent Transport Systems used to record the speed of road vehicles and the method of data recording and processing were discussed. In the third part, the accident maps and the locations of the stored sectional speed measurements were analysed, on the basis of which the proposition of places for the implementation of the network of average speed measurements was created due to the high accident rate.


2017 ◽  
Vol 70 ◽  
pp. 551-562 ◽  
Author(s):  
Teis Hansen ◽  
Antje Klitkou ◽  
Mads Borup ◽  
Lisa Scordato ◽  
Nina Wessberg

Author(s):  
Minzorov Oleksandr ◽  

Mining engineering networks, road transport systems, electric power networks, electronic circuitry, circulatory, respiratory, endocrine and other internal systems of people and other living beings, hydraulic and hydro-electrical systems, aeromechanics, gas dynamics and many other networks in the fields of physics, chemistry, transport, mathematics, biology, economics and other fields of science belong to the network dynamic objects with distributed parameters, which is a class of complex dynamic systems (VTS), which give rise to many different problems and problems with large amounts of data using computer parallel modeling. Technological and technical schemes of different subject areas and different complexities, secondary topologies of technological and technical objects with distributed parameters can also be presented as graphs with appropriate physical and mathematical interpretations of branches and nodes. Technological importance and technical complexity of network dynamic objects with distributed parameters (MDORP) determine the urgency of the problems of active model support (Model Drive Engineering, MDE) of industry innovative projects for building technological schemes, automation of dynamic process control in enterprises, development of simulators for staff simulators for narrow specialties, guaranteeing safe operation of complex and expensive equipment, modernization within the requirements for compliance with the level of objects of Industry 4.0, which can be represented in the form of network dynamic objects with distributed parameters. The article is a contribution to the solution of MDE-problem: the technique of construction of consecutive MDORP simulators on the basis of Block-oriented-language (BOlanguage) of modeling is developed, the method of interactive computer support of development of simulators for objects of real industrial complexity is offered. In the article the part of real technical topology is considered, realized and investigated, and results will be used at creation of parallel simulators.


2020 ◽  
Vol 5 (10) ◽  
pp. 88
Author(s):  
Salvatore Trubia ◽  
Alessandro Severino ◽  
Salvatore Curto ◽  
Fabio Arena ◽  
Giovanni Pau

The goal of civil engineering has always been the research and implementation of methods, technologies, and infrastructures to improve the community’s quality of life. One of the branches of civil engineering that has the strongest effect on progress is transport. The quality of transport has a profound economic and social impact on our communities regarding trade (freight transport) and city livability (public transport systems). However, innovation is not the only way to improve the features above-mentioned, especially public transport, considering that it is usually beneficial to enhance and repurpose vehicles with appropriate adjustments to offer more efficient services. Other perspectives that influence public transport systems are the costs and times of design and construction, maintenance, operating costs, and environmental impact, especially concerning CO2 emissions. Considering these issues, among the various types of existing public transport systems, those of the so-called Bus Rapid Transit (BRT) offer worthwhile results. The BRT system is a type of public road transport operated by bus on reserved lanes, and it is significantly profitable, especially from an economic point of view, in areas where there are existing bus routes. Nonetheless, for the construction of works minimization, it is closely linked to other features that improve its usefulness, depending on the vehicles’ quality such as capacity, but above all, the propulsion or driving autonomy that would guarantee high efficiency. This paper introduces an analysis of some BRT systems operating worldwide, presenting the background, general technical features, and the correlation with autonomous vehicles.


Sign in / Sign up

Export Citation Format

Share Document