scholarly journals Radio-continuum surveys with SKA and LOFAR: a first look at the perspectives for radio mini-halos

2018 ◽  
Vol 617 ◽  
pp. A11 ◽  
Author(s):  
M. Gitti ◽  
G. Brunetti ◽  
R. Cassano ◽  
S. Ettori

Context. Diffuse synchrotron radio emission has been observed in a number of cool-core clusters on scales comparable to that of the cooling region. These radio sources are called “mini-halos”. In order to understand their origin, which is still unclear, joint radio and X-ray statistical studies of large cluster samples are necessary to investigate the radio mini-halo properties and their connection with the cluster thermodynamics. Aims. We here extend our previous explorative study and investigate the perspectives offered by surveys in the radio continuum with the LOw Frequency ARray (LOFAR) and the Square Kilometre Array (SKA), in particular examining the effect of the intracluster magnetic field in the mini-halo region for the first time. Methods. By considering the minimum flux detectable in radio surveys and exploiting the Pradio − LX correlation observed for known mini-halos, we estimate the detection limits achievable by future radio observational follow-up of X-ray cluster samples, such as HIFLUGCS and eROSITA. This allows us to estimate the maximum number of radio mini-halos that can potentially be discovered in future surveys as a function of redshift and magnetic field strength. Results. Under the optimistic assumption that all cool-core systems host a mini-halo and that the radio versus X-ray scaling relation extends to systems with lower X-ray luminosity, we show that future radio surveys with LOFAR and SKA1 (at ∼140 MHz and ∼1.4 GHz) have the potential to discover ∼1000–10 000 radio mini-halo candidates up to redshift z =  1. This shows that these surveys may be able to produce a breakthrough in the study of these sources. We further note that future SKA1 radio surveys at redshift z > 0.6 will allow us to distinguish between different magnetic fields in the mini-halo region, because higher magnetic fields are expected to produce more powerful mini-halos, thus implying a larger number of mini-halo candidates detected at high redshift. For example, the non-detection with SKA1 of mini-halos at z > 0.6 will suggest a low magnetic field (B < few μG). The synergy of these radio surveys with future X-ray observations and theoretical studies is essential in establishing the radio mini-halo physical nature.

2019 ◽  
Vol 632 ◽  
pp. A13 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
M. Weżgowiec ◽  
J. Irwin ◽  
R. Beck ◽  
...  

Context. The radio continuum halos of edge-on spiral galaxies have diverse morphologies, with different magnetic field properties and cosmic ray (CR) transport processes into the halo. Aims. Using the Continuum HAloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA) in two frequency bands, 6 GHz (C-band) and 1.5 GHz (L-band), we analyzed the radio properties, including polarization and the transport processes of the CR electrons (CREs), in the edge-on spiral galaxy NGC 4013. Supplementary LOw-Frequency ARray (LOFAR) data at 150 MHz are used to study the low-frequency properties of this galaxy and X-ray data are used to investigate the central region. Methods. We determined the total radio flux densities (central source, disk, halo and total) as well as the radio scale heights of the radio continuum emission at both CHANG-ES frequencies and at the LOFAR frequency. We derived the magnetic field orientation from CHANG-ES polarization data and rotation measure synthesis (RM synthesis). Furthermore, we used the revised equipartition formula to calculate the magnetic field strength. Lastly, we modeled the processes of CR transport into the halo with the 1D SPINNAKER model. Results. The central point source dominates the radio continuum emission with a mean of ∼35% of the total flux density emerging from the central source in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits, with halo scale heights of 1.2 kpc in C-band, 2.0 kpc in L-band, and 3.1 kpc at 150 MHz, better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint and contributes only 40% and 56% of the total flux density in C-band and L-band, respectively. This is less than in galaxies with wind-driven halos. While the SPINNAKER models of the radio profiles show that advection with a launching velocity of ∼20 km s−1 (increasing to ∼50 km s−1 at 4 kpc height) fits the data equally well or slightly better, diffusion is the dominating transport process up to heights of 1–2 kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6 μG is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6 kpc. Conclusions. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with SPINNAKER, and the low temperature of the X-ray emitting hot gas.


Author(s):  
J. G. COELHO ◽  
M. MALHEIRO

Some of the most interesting types of astrophysical objects that have been intensively studied in the recent years are the Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) seen usually as neutron stars pulsars with super strong magnetic fields. However, in the last two years two SGRs with low magnetic fields have been detected. Moreover, fast and very magnetic white dwarf pulsars have also been observed in the last years. Based on these new pulsar discoveries, white dwarf pulsars have been proposed as an alternative explanation to the observational features of SGRs and AXPs. Here we present several properties of these SGRs/AXPs as WD pulsar, in particular the surface magnetic field and the magnetic dipole momentum.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2016 ◽  
Vol 12 (S329) ◽  
pp. 369-372
Author(s):  
C. L. Fletcher ◽  
V. Petit ◽  
Y. Nazé ◽  
G. A. Wade ◽  
R. H. Townsend ◽  
...  

AbstractRecent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.


2018 ◽  
Vol 615 ◽  
pp. A98 ◽  
Author(s):  
D. D. Mulcahy ◽  
A. Horneffer ◽  
R. Beck ◽  
M. Krause ◽  
P. Schmidt ◽  
...  

Context. Cosmic rays and magnetic fields play an important role for the formation and dynamics of gaseous halos of galaxies. Aims. Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. Spectral information can be used to test models of CRE propagation. Free–free absorption by ionized gas at low frequencies allows us to investigate the properties of the warm ionized medium in the disk. Methods. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129–163 MHz with the LOw Frequency ARray (LOFAR) and at 13–18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1–2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. Results. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free–free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 ± 2 μG. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 ± 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation. Conclusions. Free–free absorption is probably important at and below about 150 MHz in the disks of edge-on galaxies. To reliably separate the thermal and nonthermal emission components, to investigate spectral steepening due to CRE energy losses, and to measure magnetic field strengths in the disk and halo, wide frequency coverage and high spatial resolution are indispensable.


2020 ◽  
Vol 634 ◽  
pp. A138
Author(s):  
K. L. Emig ◽  
P. Salas ◽  
F. de Gasperin ◽  
J. B. R. Oonk ◽  
M. C. Toribio ◽  
...  

Context. Radio recombination lines (RRLs) at frequencies ν <  250 MHz trace the cold, diffuse phase of the interstellar medium, and yet, RRLs have been largely unexplored outside of our Galaxy. Next-generation low-frequency interferometers such as LOFAR, MWA, and the future SKA will, with unprecedented sensitivity, resolution, and large fractional bandwidths, enable the exploration of the extragalactic RRL universe. Aims. We describe methods used to (1) process LOFAR high band antenna (HBA) observations for RRL analysis, and (2) search spectra for RRLs blindly in redshift space. Methods. We observed the radio quasar 3C 190 (z ≈ 1.2) with the LOFAR HBA. In reducing these data for spectroscopic analysis, we placed special emphasis on bandpass calibration. We devised cross-correlation techniques that utilize the unique frequency spacing between RRLs to significantly identify RRLs in a low-frequency spectrum. We demonstrate the utility of this method by applying it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new observations of 3C 190. Results. Radio recombination lines have been detected in the foreground of 3C 190 at z = 1.12355 (assuming a carbon origin) owing to the first detection of RRLs outside of the local universe (first reported in A&A, 622, A7). Toward the Galactic supernova remnant Cassiopeia A, we uncover three new detections: (1) stimulated Cϵ transitions (Δn = 5) for the first time at low radio frequencies, (2) Hα transitions at 64 MHz with a full width at half-maximum of 3.1 km s−1 the most narrow and one of the lowest frequency detections of hydrogen to date, and (3) Cα at vLSR ≈ 0 km s−1 in the frequency range 55–78 MHz for the first time. Additionally, we recover Cα, Cβ, Cγ, and Cδ from the −47 km s−1 and −38 km s−1 components. In the nearby starburst galaxy M 82, we do not find a significant feature. With previously used techniques, we reproduce the previously reported line properties. Conclusions. RRLs have been blindly searched and successfully identified in Galactic (to high-order transitions) and extragalactic (to high redshift) observations with our spectral searching method. Our current searches for RRLs in LOFAR observations are limited to narrow (<100 km s−1) features, owing to the relatively small number of channels available for continuum estimation. Future strategies making use of a wider band (covering multiple LOFAR subbands) or designs with larger contiguous frequency chunks would aid calibration to deeper sensitivities and broader features.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


1990 ◽  
Vol 140 ◽  
pp. 459-462
Author(s):  
Richard G. Strom

Faraday depolarization estimates of thermal densities within the components of double radio sources agree well with estimates from X-ray observations of hot halos around early-type galaxies, provided magnetic field strengths are close to their equipartition values. Internal Faraday dispersion is the main cause of the depolarization observed.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 699-699
Author(s):  
Klaus Dolag ◽  
Alexander M. Beck ◽  
Alexander Arth

AbstractUsing the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism – where SN explosions during the assembly of galaxies provide magnetic seed fields – has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).


2018 ◽  
Vol 279 ◽  
pp. 35-43 ◽  
Author(s):  
Ze Chao Jiang ◽  
Fan Yang ◽  
Jian Lan ◽  
Qing Chao Tian ◽  
Wei Dong Xuan ◽  
...  

Preparation of Mn-Cu based damping alloy ingots coupled with strong magnetic fields shows many interesting phenomena on the solidification microstructure and the crystal lattice. In this study, modified M2052 ingots were prepared under different magnetic fields to investigate the bulk solidification behavior by using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Metallographic analysis reveals that the deflection angle of the primary dendrite arm increases with the increase of magnetic field strength. The distribution of chemical composition characterized by X-ray Fluorescence discloses that Mn is enriched while Cu is depleted along the circumferential surface side, and the variation tendency changes from almost a level to a sloping line under applied magnetic field. High magnetic field have altered the orientation of the γ-Mn dendrites from (200) to (111), and the coupling mechanism of alloy solidification with strong magnetic field is discussed based on the experimental results.


Sign in / Sign up

Export Citation Format

Share Document