scholarly journals Super star cluster feedback driving ionization, shocks and outflows in the halo of the nearby starburst ESO 338-IG04

2018 ◽  
Vol 619 ◽  
pp. A131 ◽  
Author(s):  
A. Bik ◽  
G. Östlin ◽  
V. Menacho ◽  
A. Adamo ◽  
M. Hayes ◽  
...  

Context. Stellar feedback strongly affects the interstellar medium (ISM) of galaxies. Stellar feedback in the first galaxies likely plays a major role in enabling the escape of LyC photons, which contribute to the re-ionization of the Universe. Nearby starburst galaxies serve as local analogues allowing for a spatially resolved assessment of the feedback processes in these galaxies. Aims.We aim to characterize the feedback effects from the star clusters in the local high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the properties of the most massive clusters. Methods. We used high quality VLT/MUSE optical integral field data to derive the physical properties of the ISM such as ionization, density, shocks, and performed new fitting of the spectral energy distributions of the brightest clusters in ESO 338-IG04 from HST imaging. Results.We find that ESO 338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We identify four Wolf-Rayet (WR) clusters based on the blue and red WR bump. We follow previously identified ionization cones and find that the ionization of the halo increases with distance. Analysis of the galaxy kinematics shows two complex outflows driven by the numerous young clusters in the galaxy. We find a ring of shocked emission traced by an enhanced [O I]/Hα ratio surrounding the starburst and at the end of the outflow. Finally we detect nitrogen enriched gas associated with the outflow, likely caused by the WR stars in the massive star clusters. Conclusions. Photoionization dominates the central starburst and sets the ionization structure of the entire halo, resulting in a density bounded halo, facilitating the escape of LyC photons. Outside the central starburst, shocks triggered by an expanding super bubble become important. The shocks at the end of the outflow suggest interaction between the hot outflowing material and the more quiescent halo gas.

2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2020 ◽  
Vol 216 (4) ◽  
Author(s):  
Angela Adamo ◽  
Peter Zeidler ◽  
J. M. Diederik Kruijssen ◽  
Mélanie Chevance ◽  
Mark Gieles ◽  
...  

Abstract Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e. detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.


2019 ◽  
Vol 15 (S352) ◽  
pp. 64-68
Author(s):  
Xiangcheng Ma

AbstractWe present a suite of high-resolution cosmological zoom-in simulations of galaxies at z⩾ 5using the state-of-the-art models for the multi-phase ISM, star formation, and stellar feedback from the FIRE project. We present a series of key results from these simulations, including the stellar mass–halo mass relation, the ultraviolet luminosity functions, dust attenuation and dust temperatures, the ubiquitous formation of bound star clusters, morphology and clumpiness, and the escape fractions of ionizing photons from high-redshift galaxies. We discuss how different simulations in the literature agree and disagree and what observations are most useful for testing the models in the era of ALMA and JWST.


2014 ◽  
Vol 1 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Casiana Muñoz-Tuñon ◽  
Jorge Sanchez Almeida ◽  
Debra M. Elmegreen ◽  
Bruce G. Elmegreen

Tadpole Galaxies look like a star forming head with a tail structure to the side. They are also named cometaries. In a series of recent works we have discovered a number of issues that lead us to consider them extremely interesting targets. First, from images, they are disks with a lopsided starburst. This result is rmly  established with long slit spectroscopy in a nearby representative sample. They rotate with the head following the rotation pattern but displaced from the rotation center. Moreover, in a search for extremely metal poor (XMP) galaxies, we identied tadpoles as the dominant shapes in the sample - nearly 80% of the local XMP galaxies have a tadpole morphology. In addition, the spatially resolved analysis of the metallicity shows the remarkable result that there is a metallicity drop right at the position of the head. This is contrary to what intuition would say and dicult to explain if star formation has happened from gas processed in the disk. The result could however be understood if the star formation is driven by pristine gas falling into the galaxy disk. If conrmed, we could be unveiling, for the rst time, cool  ows in action in our nearby world. The tadpole class is relatively frequent at high redshift - 10% of resolvable galaxies in the Hubble UDF but less than 1% in the local Universe. They are systems that could track cool ows and test models of galaxy formation.


2020 ◽  
Vol 500 (3) ◽  
pp. 3083-3094
Author(s):  
Francesco Calura ◽  
Eros Vanzella ◽  
Stefano Carniani ◽  
Roberto Gilli ◽  
Piero Rosati ◽  
...  

ABSTRACT We report on ALMA observations of D1, a system at z ∼ 6.15 with stellar mass $M_{*} \sim 10^7 \, \mathrm{M}_{\odot }$ containing globular cluster (GC) precursors, strongly magnified by the galaxy cluster MACS J0416.1-2403. Since the discovery of GC progenitors at high redshift, ours is the first attempt to probe directly the physical properties of their neutral gas through infrared observations. A careful analysis of our data set, performed with a suitable procedure designed to identify faint narrow lines and which can test various possible values for the unknown linewidth value, allowed us to identify a 4σ tentative detection of [C ii] emission with intrinsic luminosity $L_{\rm [C\, \rm {\small II}]}=(2.9 \pm 1.4)~10^6 \, {\it L}_{\odot }$, one of the lowest values ever detected at high redshift. This study offers a first insight on previously uncharted regions of the $L_{\rm [C\, \rm {\small II}]}{-}{\rm SFR}$ relation. Despite large uncertainties affecting our measure of the star formation rate, if taken at face value our estimate lies more than ∼1 dex below the values observed in local and high redshift systems. Our weak detection indicates a deficiency of [C ii] emission, possibly ascribed to various explanations, such as a low-density gas and/or a strong radiation field caused by intense stellar feedback, and a low metal content. From the non-detection in the continuum, we derive constraints on the dust mass, with 3σ upper limit values as low as ∼ a few 104 M⊙, consistent with the values measured in local metal-poor galaxies.


Author(s):  
Anastasia Fialkov ◽  
Rennan Barkana ◽  
Matt Jarvis

Abstract The multi-tracer technique employs a ratio of densities of two differently biased galaxy samples that trace the same underlying matter density field, and was proposed to alleviate the cosmic variance problem. Here we propose a novel application of this approach, applying it to two different tracers one of which is the 21-cm signal of neutral hydrogen from the epochs of reionization and comic dawn. The second tracer is assumed to be a sample of high-redshift galaxies, but the approach can be generalized and applied to other high-redshift tracers. We show that the anisotropy of the ratio of the two density fields can be used to measure the sky-averaged 21-cm signal, probe the spectral energy distribution of radiative sources that drive this signal, and extract large-scale properties of the second tracer, e.g., the galaxy bias. Using simulated 21-cm maps and mock galaxy samples, we find that the method works well for an idealized galaxy survey. However, in the case of a more realistic galaxy survey which only probes highly biased luminous galaxies, the inevitable Poisson noise makes the reconstruction far more challenging. This difficulty can be mitigated with the greater sensitivity of future telescopes along with larger survey volumes.


2011 ◽  
Vol 7 (S284) ◽  
pp. 205-209
Author(s):  
Andreas Efstathiou ◽  
Natalie Christopher ◽  
Aprajita Verma ◽  
Ralf Siebenmorgen

AbstractWe present a new model for the infrared emission of the high redshift hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first demonstrate that the combination of the AGN tapered disc and starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of type 2 AGN measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the ν Sν distribution of the galaxy falls very steeply with increasing frequency (a characteristic of heavy absorption by dust) but shows a silicate feature in emission. We propose a model that assumes two components of emission: clouds that are associated with the narrow-line region and a highly obscured starburst. The emission from the clouds must suffer significantly stronger gravitational lensing compared to the emission from the torus to explain the observed spectral energy distribution.


2015 ◽  
Vol 12 (S316) ◽  
pp. 44-49
Author(s):  
A. Bik ◽  
G. Östlin ◽  
V. Menacho ◽  
A. Adamo ◽  
M. Hayes ◽  
...  

AbstractThe stellar content of young massive star clusters emit large amounts of Lyman continuum photons and inject momentum into the inter stellar medium (ISM) by the strong stellar winds of the most massive stars in the cluster. When the most massive stars explode as supernovae, large amounts of mechanical energy are injected in the ISM. A detailed study of the ISM around these massive cluster provides insights on the effect of cluster feedback.We present high quality integral field spectroscopy taken with VLT/MUSE of two starburst galaxies: ESO 338-IG04 and Haro 11. Both galaxies contain a significant number of super star clusters. The MUSE data provide us with an unprecedented view of the state and kinematics of the ionized gas in the galaxy allowing us to study the effect of stellar feedback on small and large spatial scales. We present our recent results on studying the ISM state of these two galaxies. The data of both galaxies show that the mechanical and ionization feedback of the super star clusters in the galaxy modify the state and kinematics of the ISM substancially by creating highly ionized bubbles around the cluster, making the central part of the galaxy highly ionized. This shows that the HII regions around the individual clusters are density bounded, allowing the ionizing photons to escape and ionize the ISM further out.


2020 ◽  
Vol 499 (2) ◽  
pp. 3046-3060
Author(s):  
Hiroyuki Hirashita ◽  
Weining Deng ◽  
Maria S Murga

ABSTRACT Based on a one-zone evolution model of grain size distribution in a galaxy, we calculate the evolution of infrared spectral energy distribution (SED), considering silicate, carbonaceous dust, and polycyclic aromatic hydrocarbons (PAHs). The dense gas fraction (ηdense) of the interstellar medium (ISM), the star formation time-scale (τSF), and the interstellar radiation field intensity normalized to the Milky Way value (U) are the main parameters. We find that the SED shape generally has weak mid-infrared (MIR) emission in the early phase of galaxy evolution because the dust abundance is dominated by large grains. At an intermediate stage (t ∼ 1 Gyr for τSF = 5 Gyr), the MIR emission grows rapidly because the abundance of small grains increases drastically by the accretion of gas-phase metals. We also compare our results with observational data of nearby and high-redshift (z ∼ 2) galaxies taken by Spitzer. We broadly reproduce the flux ratios in various bands as a function of metallicity. We find that small ηdense (i.e. the ISM dominated by the diffuse phase) is favoured to reproduce the 8 $\rm{\mu m}$ intensity dominated by PAHs for both the nearby and the z ∼ 2 samples. A long τSF raises the 8 $\rm{\mu m}$ emission to a level consistent with the nearby low-metallicity galaxies. The broad match between the theoretical calculations and the observations supports our understanding of the grain size distribution, but the importance of the diffuse ISM for the PAH emission implies the necessity of spatially resolved treatment for the ISM.


Sign in / Sign up

Export Citation Format

Share Document