scholarly journals A 10-M⊙ YSO with a Keplerian disk and a nonthermal radio jet

2019 ◽  
Vol 622 ◽  
pp. A206 ◽  
Author(s):  
L. Moscadelli ◽  
A. Sanna ◽  
R. Cesaroni ◽  
V. M. Rivilla ◽  
C. Goddi ◽  
...  

Context. To constrain present star formation models, we need to simultaneously establish the dynamical and physical properties of disks and jets around young stars. Aims. We previously observed the star-forming region G16.59−0.05 through interferometric observations of both thermal and maser lines, and identified a high-mass young stellar object (YSO) which is surrounded by an accretion disk and drives a nonthermal radio jet. Our goals are to establish the physical conditions of the environment hosting the high-mass YSO and to study the kinematics of the surrounding gas in detail. Methods. We performed high-angular-resolution (beam FWHM ≈ 0′′.15) 1.2-mm continuum and line observations towards G16.59−0.05 with the Atacama Large Millimeter Array (ALMA). Results. The main dust clump, with size ≈104 au, is resolved into four distinct, relatively compact (diameter ~2000 au) millimeter (mm) sources. The source harboring the high-mass YSO is the most prominent in molecular emission. By fitting the emission profiles of several unblended and optically thin transitions of CH3OCH3 and CH3OH, we derived gas temperatures inside the mm sources in the range 42–131 K, and calculated masses of 1–5 M⊙. A well-defined Local Standard of Rest (LSR) velocity (VLSR) gradient is detected in most of the high-density molecular tracers at the position of the high-mass YSO, pinpointed by compact 22-GHz free-free emission. This gradient is oriented along a direction forming a large (≈70°) angle with the radio jet, traced by elongated 13-GHz continuum emission. The butterfly-like shapes of the P–V plots and the linear pattern of the emission peaks of the molecular lines at high velocity confirm that this VLSR gradient is due to rotation of the gas in the disk surrounding the high-mass YSO. The disk radius is ≈500 au, and the VLSR distribution along the major axis of the disk is well reproduced by a Keplerian profile around a central mass of 10 ± 2 M⊙. The position of the YSO is offset by ≳0′′.1 from the axis of the radio jet and the dust emission peak. To explain this displacement we argue that the high-mass YSO could have moved from the center of the parental mm source owing to dynamical interaction with one or more companions.

2020 ◽  
Vol 642 ◽  
pp. A164 ◽  
Author(s):  
M. Villenave ◽  
F. Ménard ◽  
W. R. F. Dent ◽  
G. Duchêne ◽  
K. R. Stapelfeldt ◽  
...  

Aims. We aim to study vertical settling and radial drift of dust in protoplanetary disks from a different perspective: an edge-on view. An estimation of the amplitude of settling and drift is highly relevant to understanding planet formation. Methods. We analyze a sample of 12 HST-selected edge-on protoplanetary disks (i.e., seen with high inclinations) for which the vertical extent of the emission layers can be constrained directly. We present ALMA high angular resolution continuum images (~0.1′′) of these disks at two wavelengths, 0.89 and 2.06 mm (respectively ALMA bands 7 and 4), supplemented with archival band 6 data (1.33 mm) where available. Results. Several sources show constant brightness profiles along their major axis with a steep drop at the outer edges. Two disks have central holes with additional compact continuum emission at the location of the central star. For most sources, the millimeter continuum emission is more compact than the scattered light, both in the vertical and radial directions. Six sources are resolved along their minor axis in at least one millimetric band, providing direct information on the vertical distribution of the millimeter grains. For the second largest disk of the sample, Tau 042021, the significant difference in vertical extent between band 7 and band 4 suggests efficient size-selective vertical settling of large grains. Furthermore, the only Class I object in our sample shows evidence of flaring in the millimeter. Along the major axis, all disks are well resolved. Four of them are larger in band 7 than in band 4 in the radial direction, and three have a similar radial extent in all bands. These three disks are also the ones with the sharpest apparent edges (between 80% and 20% of the peak flux, Δr∕r ~ 0.3), and two of them are binaries. For all disks, we also derive the millimeter brightness temperature and spectral index maps. We find that all edge-on disks in our sample are likely optically thick and that the dust emission reveals low brightness temperatures in most cases (brightness temperatures ≤10 K). The integrated spectral indices are similar to those of disks at lower inclination. Conclusions. The comparison of a generic radiative transfer disk model with our data shows that at least three disks are consistent with a small millimeter dust scale height, of a few au (measured at r = 100 au). This is in contrast with the more classical value of hg ~ 10 au derived from scattered light images and from gas line measurements. These results confirm, by direct observations, that large (millimeter) grains are subject to significant vertical settling in protoplanetary disks.


2019 ◽  
Vol 627 ◽  
pp. A85 ◽  
Author(s):  
Chuan-Peng Zhang ◽  
Timea Csengeri ◽  
Friedrich Wyrowski ◽  
Guang-Xing Li ◽  
Thushara Pillai ◽  
...  

Context. Fragmentation and feedback are two important processes during the early phases of star formation. Aims. Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibility that star formation is triggered by nearby H ii regions. Methods. We present a high angular resolution study of a sample of massive proto-cluster clumps G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71. Combining infrared data at 4.5, 8.0, 24, and 70 μm, we use a few arcsecond resolution, radiometer and millimeter inteferometric data taken at 1.3 cm, 3.5 mm, 1.3 mm, and 870 μm to study their fragmentation and evolution. Our sample is unique in the sense that all the clumps have neighboring H ii regions. Taking advantage of that, we tested triggered star formation using a novel method where we study the alignment of the center of mass traced by dust emission at multiple scales. Results. The eight massive clumps, identified based on single-dish observations, have masses ranging from 228 to 2279 M⊙ within an effective radius of Reff ~ 0.5 pc. We detect compact structures towards six out of the eight clumps. The brightest compact structures within infrared bright clumps are typically associated with embedded compact radio continuum sources. The smaller scale structures of Reff ~ 0.02 pc observed within each clump are mostly gravitationally bound and massive enough to form at least a B3-B0 type star. Many condensations have masses larger than 8 M⊙ at a small scale of Reff ~ 0.02 pc. We find that the two infrared quiet clumps with the lowest mass and lowest surface density with <300 M⊙ do not host any compact sources, calling into question their ability to form high-mass stars. Although the clumps are mostly infrared quiet, the dynamical movements are active at clump scale (~1 pc). Conclusions. We studied the spatial distribution of the gas conditions detected at different scales. For some sources we find hints of external triggering, whereas for others we find no significant pattern that indicates triggering is dynamically unimportant. This probably indicates that the different clumps go through different evolutionary paths. In this respect, studies with larger samples are highly desired.


2021 ◽  
Vol 922 (1) ◽  
pp. 66
Author(s):  
Tatiana M. Rodríguez ◽  
Peter Hofner ◽  
Esteban D. Araya ◽  
Qizhou Zhang ◽  
Hendrik Linz ◽  
...  

Abstract We present Very Large Array C-, X-, and Q-band continuum observations, as well as 1.3 mm continuum and CO(2-1) observations with the Submillimeter Array toward the high-mass protostellar candidate ISOSS J23053+5953 SMM2. Compact centimeter continuum emission was detected near the center of the SMM2 core with a spectral index of 0.24(± 0.15) between 6 and 3.6 cm, and a radio luminosity of 1.3(±0.4) mJy kpc2. The 1.3 mm thermal dust emission indicates a mass of the SMM2 core of 45.8 (±13.4) M ⊙, and a density of 7.1 (±1.2)× 106 cm−3. The CO(2-1) observations reveal a large, massive molecular outflow centered on the SMM2 core. This fast outflow (>50 km s−1 from the cloud systemic velocity) is highly collimated, with a broader, lower-velocity component. The large values for outflow mass (45.2 ± 12.6 M ⊙) and momentum rate (6 ± 2 × 10−3 M ⊙ km s−1yr−1) derived from the CO emission are consistent with those of flows driven by high-mass YSOs. The dynamical timescale of the flow is between 1.5 and 7.2 × 104 yr. We also found from the C18O to thermal dust emission ratio that CO is depleted by a factor of about 20, possibly due to freeze-out of CO molecules on dust grains. Our data are consistent with previous findings that ISOSS J23053 + 5953 SMM2 is an emerging high-mass protostar in an early phase of evolution, with an ionized jet and a fast, highly collimated, and massive outflow.


2020 ◽  
Vol 640 ◽  
pp. A111
Author(s):  
C. Arce-Tord ◽  
F. Louvet ◽  
P. C. Cortes ◽  
F. Motte ◽  
C. L. H. Hull ◽  
...  

Aims. It has been proposed that the magnetic field, which is pervasive in the interstellar medium, plays an important role in the process of massive star formation. To better understand the impact of the magnetic field at the pre- and protostellar stages, high-angular resolution observations of polarized dust emission toward a large sample of massive dense cores are needed. We aim to reveal any correlation between the magnetic field orientation and the orientation of the cores and outflows in a sample of protostellar dense cores in the W43-MM1 high-mass star-forming region. Methods. We used the Atacama Large Millimeter Array in Band 6 (1.3 mm) in full polarization mode to map the polarized emission from dust grains at a physical scale of ~2700 au. We used these data to measure the orientation of the magnetic field at the core scale. Then, we examined the relative orientations of the core-scale magnetic field, of the protostellar outflows, and of the major axis of the dense cores determined from a 2D Gaussian fit in the continuum emission. Results. We find that the orientation of the dense cores is not random with respect to the magnetic field. Instead, the dense cores are compatible with being oriented 20–50° with respect to the magnetic field. As for the outflows, they could be oriented 50–70° with respect to the magnetic field, or randomly oriented with respect to the magnetic field, which is similar to current results in low-mass star-forming regions. Conclusions. The observed alignment of the position angle of the cores with respect to the magnetic field lines shows that the magnetic field is well coupled with the dense material; however, the 20–50° preferential orientation contradicts the predictions of the magnetically-controlled core-collapse models. The potential correlation of the outflow directions with respect to the magnetic field suggests that, in some cases, the magnetic field is strong enough to control the angular momentum distribution from the core scale down to the inner part of the circumstellar disks where outflows are triggered.


2018 ◽  
Vol 615 ◽  
pp. A141 ◽  
Author(s):  
M. T. Beltrán ◽  
R. Cesaroni ◽  
V. M. Rivilla ◽  
Á. Sánchez-Monge ◽  
L. Moscadelli ◽  
...  

As part of our effort to search for circumstellar disks around high-mass stellar objects, we observed the well-known core G31.41 +0.31 with ALMA at 1.4 mm with an angular resolution of ~0.′′22 (~1700 au). The dust continuum emission has been resolved into two cores namely Main and NE. The Main core, which has the stronger emission and is the more chemically rich, has a diameter of ~5300 au, and is associated with two free-free continuum sources. The Main core looks featureless and homogeneous in dust continuum emission and does not present any hint of fragmentation. Each transition of CH3CN and CH3OCHO, both ground and vibrationally excited, as well as those of CH3CN isotopologues, shows a clear velocity gradient along the NE–SW direction, with velocity linearly increasing with distance from the center, consistent with solid-body rotation. However, when comparing the velocity field of transitions with different upper level energies, the rotation velocity increases with increasing energy of the transition, which suggests that the rotation speeds up toward the center. Spectral lines towardtoward the dust continuum peak show an inverse P-Cygni profile that supports the existence of infall in the core. The infall velocity increases with the energy of the transition suggesting that the infall is accelerating toward the center of the core, consistent with gravitational collapse. Despite the monolithic appearance of the Main core, the presence of red-shifted absorption, the existence of two embedded free-free sources at the center, and the rotational spin-up are consistent with an unstable core undergoing fragmentation with infall and differential rotation due to conservation of angular momentum. Therefore, the most likely explanation for the monolithic morphology is that the large opacity of the dust emission prevents the detection of any inhomogeneity in the core.


2012 ◽  
Vol 8 (S287) ◽  
pp. 401-406
Author(s):  
C. Goddi ◽  
L. Moscadelli ◽  
A. Sanna

AbstractWe report multi-epoch VLBI observations of molecular masers towards the high-mass star forming region AFGL 5142, leading to the determination of the 3D velocity field of circumstellar molecular gas at radii <0.″23 (or 400 AU) from the protostar MM–1. Our observations of CH3OH maser emission enabled, for the first time, a direct measurement of infall of a molecular envelope on to an intermediate-mass protostar (radius of 300 AU, velocity of 5 km s−1, and infall rate of 6 × 10−4n8M⊙ yr−1, where n8 is the ambient volume density in units of 108 cm−3). In addition, our measurements of H2O maser (and radio continuum) emission revealed a collimated bipolar molecular outflow (and ionized jet) from MM–1. The evidence of simultaneous accretion and outflow at small spatial scales, makes AFGL 5142 an extremely compelling target for high-angular resolution studies of high-mass star formation.


2018 ◽  
Vol 617 ◽  
pp. A89 ◽  
Author(s):  
T. Csengeri ◽  
S. Bontemps ◽  
F. Wyrowski ◽  
A. Belloche ◽  
K. M. Menten ◽  
...  

The conditions leading to the formation of the most massive O-type stars are still an enigma in modern astrophysics. To assess the physical conditions of high-mass protostars in their main accretion phase, here we present a case study of a young massive clump selected from the ATLASGAL survey, G328.2551–0.5321. The source exhibits a bolometric luminosity of 1.3 × 104 L⊙, which allows us to estimate that its current protostellar mass lies between ~11 and 16 M⊙. We show high angular resolution observations with ALMA that reach a physical scale of ~400 au. To reveal the structure of this high-mass protostellar envelope in detail at a ~0.17′′ resolution, we used the thermal dust continuum emission and spectroscopic information, amongst others from the CO (J = 3–2) line, which is sensitive to the high-velocity molecular outflow of the source. We also used the SiO (J = 8–7) and SO2 (J = 82,6 − 71,7) lines, which trace shocks along the outflow, as well as several CH3OH and HC3N lines that probe the gas of the inner envelope in the closest vicinity of the protostar. Our observations of the dust continuum emission reveal a single high-mass protostellar envelope, down to our resolution limit. We find evidence for a compact, marginally resolved continuum source that is surrounded by azimuthal elongations that could be consistent with a spiral pattern. We also report on the detection of a rotational line of CH3OH within its vt = 1 torsionally excited state. This shows two bright emission peaks that are spatially offset from the dust continuum peak and exhibit a distinct velocity component ±4.5 km s−1 offset from the systemic velocity of the source. Rotational diagram analysis and models based on local thermodynamic equilibrium assumption require high CH3OH column densities that reach N(CH3OH) = 1.2−2 × 1019 cm−2, and kinetic temperatures of the order of 160–200 K at the position of these peaks. A comparison of their morphology and kinematics with those of the outflow component of the CO line and the SO2 line suggests that the high-excitation CH3OH spots are associated with the innermost regions of the envelope. While the HC3N v7 = 0 (J = 37–36) line is also detected in the outflow, the HC3N v7 = 1e (J = 38–37) rotational transition within the first vibrationally excited state of the molecule shows a compact morphology. We find that the velocity shifts at the position of the observed high-excitation CH3 OH spots correspond well to the expected Keplerian velocity around a central object with 15 M⊙ consistent with the mass estimate based on the bolometric luminosity of the source. We propose a picture where the CH3 OH emission peaks trace the accretion shocks around the centrifugal barrier, pinpointing the interaction region between the collapsing envelope and an accretion disc. The physical properties of the accretion disc inferred from these observations suggest a specific angular momentum several times higher than typically observed towards low-mass protostars. This is consistent with a scenario of global collapse setting on at larger scales that could carry a more significant amount of kinetic energy compared to the core-collapse models of low-mass star formation. Furthermore, our results suggest that vibrationally excited HC3 N emission could be a new tracer for compact accretion discs around high-mass protostars.


2020 ◽  
Vol 635 ◽  
pp. L12 ◽  
Author(s):  
◽  
A. Caratti o Garatti ◽  
R. Fedriani ◽  
R. Garcia Lopez ◽  
M. Koutoulaki ◽  
...  

Context. The inner regions of the discs of high-mass young stellar objects (HMYSOs) are still poorly known due to the small angular scales and the high visual extinction involved. Aims. We deploy near-infrared spectro-interferometry to probe the inner gaseous disc in HMYSOs and investigate the origin and physical characteristics of the CO bandhead emission (2.3–2.4 μm). Methods. We present the first GRAVITY/VLTI observations at high spectral (ℛ = 4000) and spatial (mas) resolution of the CO overtone transitions in NGC 2024 IRS 2. Results. The continuum emission is resolved in all baselines and is slightly asymmetric, displaying small closure phases (≤8°). Our best ellipsoid model provides a disc inclination of 34° ±1°, a disc major axis position angle (PA) of 166° ± 1°, and a disc diameter of 3.99 ± 0.09 mas (or 1.69  ±  0.04 au, at a distance of 423 pc). The small closure phase signals in the continuum are modelled with a skewed rim, originating from a pure inclination effect. For the first time, our observations spatially and spectrally resolve the first four CO bandheads. Changes in visibility, as well as differential and closure phases across the bandheads are detected. Both the size and geometry of the CO-emitting region are determined by fitting a bidimensional Gaussian to the continuum-compensated CO bandhead visibilities. The CO-emitting region has a diameter of 2.74±0.070.08 mas (1.16  ±  0.03 au), and is located in the inner gaseous disc, well within the dusty rim, with inclination and PA matching the dusty disc geometry, which indicates that both dusty and gaseous discs are coplanar. Physical and dynamical gas conditions are inferred by modelling the CO spectrum. Finally, we derive a direct measurement of the stellar mass of M* ∼ 14.7−3.6+2 M⊙ by combining our interferometric and spectral modelling results.


2015 ◽  
Vol 11 (S315) ◽  
pp. 114-117
Author(s):  
Anaëlle Maury ◽  
Philippe André ◽  
Sébastien Maret ◽  
Arnaud Belloche ◽  
Claudio Codella ◽  
...  

AbstractBecause the formation of protostars is believed to be closely tied to the angular momentum problem of star formation, characterizing the properties of the youngest disks around Class 0 objects is crucial. However, not much is known on the structure of the youngest protostellar envelopes, on the small scales at which disks and multiple systems are observed around more evolved YSOs, due to a lack of comprehensive high angular resolution observations (probing <100 AU). In order to tackle this issue, we conducted a large observing program with the IRAM Plateau de Bure interferometer (PdBI): the CALYPSO survey, providing us with detailed maps of molecular lines and millimeter continuum emission, probing scales down to ~30–50 au towards a sample of 17 Class 0 protostars. Here we present our analysis of the CALYPSO dust continuum emission maps, constraining disk properties of the Class 0 protostars in our sample. We show that large, r > 50 au, disk structures are not observed in most Class 0 protostars from our sample, which can be described by various envelope models reproducing satisfactorily the intensity distribution of the dust emission at all scales from 50 au to 5000 au.


2019 ◽  
Vol 629 ◽  
pp. A10 ◽  
Author(s):  
F. Bosco ◽  
H. Beuther ◽  
A. Ahmadi ◽  
J. C. Mottram ◽  
R. Kuiper ◽  
...  

Context. The formation process of high-mass stars (>8 M⊙) is poorly constrained, particularly the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. Aims. We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (~500 M⊙) star-forming region IRAS 23033+5951. Methods. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30 m single-dish telescope at 220 GHz, we probe the gas and dust emission at an angular resolution of ~0.45′′, corresponding to 1900 au. Results. In the millimeter (mm) continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by 13CO (2–1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest-velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position–velocity diagrams suggest protostellar masses of ~6 and 19 M⊙. Rotational temperatures from fitting CH3CN (12K− 11K) spectra are used for estimating the gas temperature and thereby also the disk stability against gravitational fragmentation, utilizing Toomre’s Q parameter. Assuming that the candidate disk is in Keplerian rotation about the central stellar object and considering different disk inclination angles, we identify only one candidate disk as being unstable against gravitational instability caused by axisymmetric perturbations. Conclusions. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions.


Sign in / Sign up

Export Citation Format

Share Document